Abstract

We show the feasibility of producing a low-mode all-fiber combiner fabricated from a large core and extremely small NA fibers. Although these fibers support multiple modes, the combiner that we produce can be operated nearly at the single mode regime while preserving the brightness of the combined beam almost perfectly with respect to the inputs. The M-square parameter of the combined beam was 2.3 and the power transfer efficiency was close to 100%. Such an all-fiber beam combining device is a rugged solution for high-brightness, high-efficiency beam delivery.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
    [CrossRef]
  2. J. K. Kim, C. Hagemann, T. Schreiber, T. Peschel, S. Bohme, R. Eberhardt, and A. Tunnermann, Opt. Express 18, 13194(2010).
    [CrossRef] [PubMed]
  3. Y. Shamir, Y. Sintov, and M. Shtaif, Proc. SPIE 7580, 75801R (2010).
    [CrossRef]
  4. Y. Shamir, Y. Sintov, and M. Shtaif, J. Opt. Soc. Am. B 27, 2669 (2010).
    [CrossRef]
  5. J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
    [CrossRef]
  6. F. Payne, C. Hussey, and M. Yataki, Electron. Lett. 21, 461 (1985).
    [CrossRef]
  7. C. Pare, P. Laperle, and Y. Tallion, Proc. SPIE 6343, 63430T(2006).
    [CrossRef]
  8. R. Zhang, X. Zhang, D. Meiser, and H. Gissen, Opt. Express 12, 5840 (2004).
    [CrossRef] [PubMed]
  9. A. Snyder and J. D. Love, Optical Waveguide Theory(Kluwer Academic, 2000).
  10. J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
    [CrossRef]
  11. K.-S. Chiang, Electron. Lett. 23, 112 (1987).
    [CrossRef]
  12. J. S. Hamper, C. P. Botham, and S. Hornung, Electron. Lett. 24, 245 (1988).
    [CrossRef]
  13. K. Lyytikanen, Opt. Express 12, 972 (2004).
    [CrossRef]
  14. B. S. Wang and E. W. Mies, Proc. SPIE 7134, 71341I (2008).
    [CrossRef]
  15. R. J. Black and R. Bourbonais, IEEE Proc., J. Optoelectron. 133, 377 (1986).
    [CrossRef]

2010

2008

B. S. Wang and E. W. Mies, Proc. SPIE 7134, 71341I (2008).
[CrossRef]

2007

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

2006

C. Pare, P. Laperle, and Y. Tallion, Proc. SPIE 6343, 63430T(2006).
[CrossRef]

2004

1988

J. S. Hamper, C. P. Botham, and S. Hornung, Electron. Lett. 24, 245 (1988).
[CrossRef]

1987

K.-S. Chiang, Electron. Lett. 23, 112 (1987).
[CrossRef]

1986

R. J. Black and R. Bourbonais, IEEE Proc., J. Optoelectron. 133, 377 (1986).
[CrossRef]

J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
[CrossRef]

J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
[CrossRef]

1985

F. Payne, C. Hussey, and M. Yataki, Electron. Lett. 21, 461 (1985).
[CrossRef]

Black, R. J.

R. J. Black and R. Bourbonais, IEEE Proc., J. Optoelectron. 133, 377 (1986).
[CrossRef]

Bohme, S.

Botham, C. P.

J. S. Hamper, C. P. Botham, and S. Hornung, Electron. Lett. 24, 245 (1988).
[CrossRef]

Bourbonais, R.

R. J. Black and R. Bourbonais, IEEE Proc., J. Optoelectron. 133, 377 (1986).
[CrossRef]

Chiang, K.-S.

K.-S. Chiang, Electron. Lett. 23, 112 (1987).
[CrossRef]

Eberhardt, R.

Faucher, M.

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Gissen, H.

Hagemann, C.

Hamper, J. S.

J. S. Hamper, C. P. Botham, and S. Hornung, Electron. Lett. 24, 245 (1988).
[CrossRef]

Henry, W. M.

J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
[CrossRef]

J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
[CrossRef]

Hornung, S.

J. S. Hamper, C. P. Botham, and S. Hornung, Electron. Lett. 24, 245 (1988).
[CrossRef]

Hussey, C.

F. Payne, C. Hussey, and M. Yataki, Electron. Lett. 21, 461 (1985).
[CrossRef]

Kim, J. K.

Laperle, P.

C. Pare, P. Laperle, and Y. Tallion, Proc. SPIE 6343, 63430T(2006).
[CrossRef]

Lize, Y.

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Love, J. D.

J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
[CrossRef]

J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
[CrossRef]

A. Snyder and J. D. Love, Optical Waveguide Theory(Kluwer Academic, 2000).

Lovelady, M.

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Lyytikanen, K.

Meiser, D.

Mies, E. W.

B. S. Wang and E. W. Mies, Proc. SPIE 7134, 71341I (2008).
[CrossRef]

Pare, C.

C. Pare, P. Laperle, and Y. Tallion, Proc. SPIE 6343, 63430T(2006).
[CrossRef]

Payne, F.

F. Payne, C. Hussey, and M. Yataki, Electron. Lett. 21, 461 (1985).
[CrossRef]

Peschel, T.

Saguin, F.

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Schreiber, T.

Shamir, Y.

Y. Shamir, Y. Sintov, and M. Shtaif, Proc. SPIE 7580, 75801R (2010).
[CrossRef]

Y. Shamir, Y. Sintov, and M. Shtaif, J. Opt. Soc. Am. B 27, 2669 (2010).
[CrossRef]

Shtaif, M.

Y. Shamir, Y. Sintov, and M. Shtaif, J. Opt. Soc. Am. B 27, 2669 (2010).
[CrossRef]

Y. Shamir, Y. Sintov, and M. Shtaif, Proc. SPIE 7580, 75801R (2010).
[CrossRef]

Sintov, Y.

Y. Shamir, Y. Sintov, and M. Shtaif, Proc. SPIE 7580, 75801R (2010).
[CrossRef]

Y. Shamir, Y. Sintov, and M. Shtaif, J. Opt. Soc. Am. B 27, 2669 (2010).
[CrossRef]

Snyder, A.

A. Snyder and J. D. Love, Optical Waveguide Theory(Kluwer Academic, 2000).

Tallion, Y.

C. Pare, P. Laperle, and Y. Tallion, Proc. SPIE 6343, 63430T(2006).
[CrossRef]

Tunnermann, A.

Wang, B. S.

B. S. Wang and E. W. Mies, Proc. SPIE 7134, 71341I (2008).
[CrossRef]

Wetter, A.

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Yataki, M.

F. Payne, C. Hussey, and M. Yataki, Electron. Lett. 21, 461 (1985).
[CrossRef]

Zhang, R.

Zhang, X.

Electron. Lett.

J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
[CrossRef]

F. Payne, C. Hussey, and M. Yataki, Electron. Lett. 21, 461 (1985).
[CrossRef]

J. D. Love and W. M. Henry, Electron. Lett. 22, 912 (1986).
[CrossRef]

K.-S. Chiang, Electron. Lett. 23, 112 (1987).
[CrossRef]

J. S. Hamper, C. P. Botham, and S. Hornung, Electron. Lett. 24, 245 (1988).
[CrossRef]

IEEE Proc., J. Optoelectron.

R. J. Black and R. Bourbonais, IEEE Proc., J. Optoelectron. 133, 377 (1986).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Proc. SPIE

A. Wetter, M. Faucher, M. Lovelady, Y. Lize, and F. Saguin, Proc. SPIE 6453, 64530I (2007).
[CrossRef]

Y. Shamir, Y. Sintov, and M. Shtaif, Proc. SPIE 7580, 75801R (2010).
[CrossRef]

B. S. Wang and E. W. Mies, Proc. SPIE 7134, 71341I (2008).
[CrossRef]

C. Pare, P. Laperle, and Y. Tallion, Proc. SPIE 6343, 63430T(2006).
[CrossRef]

Other

A. Snyder and J. D. Love, Optical Waveguide Theory(Kluwer Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

As the (a) taper’s width reduces and heat flux is applied, the (b) boundaries of the core change from square (step index) to a gradually smoothened profile, facilitating coupling of the incoming HE11 mode to higher centrosymmetric modes.

Fig. 2
Fig. 2

(a), (b) Simulated beam profile along two tapered fibers with identical V numbers, reduced linearly over the same taper length. (a) Conventional fiber ( 8.6 μm / 125 μm , 0.14 NA , V = 3.54 ), M 2 1.15 at the waist. (b) LMA fiber ( 20 μm / 200 μm / 0.06 NA , V = 3.54 ), M 2 4.3 at the waist. (c), (d) Corresponding core confinement factors. The outer shaded zones in (a) and (b) correspond to the evanescent part of the fields.

Fig. 3
Fig. 3

(a) Simulated and (b) measured intensity beam profile of a tapered LMA fiber, originally having 20 μm / 200 μm / core / clad , 0.06 NA , reduced to 50 μm in a nonadiabatic process and viewed from a cut in the waist. The launched HE 11 mode was clearly coupled into higher HE n 1 (ringlike, in this case) modes.

Fig. 4
Fig. 4

A 3 × 3 TFB fused coupler made of (a) LMA fibers is the starting biconic 3 × 3 coupler, which, after cleaving, yields (b) two fiber combiners.

Fig. 5
Fig. 5

(a) End face microscope image of a large-core TFB, with visible light source injected into the upper entry. The encircling diameter is 50 μm across. The slight asymmetry almost did not affect the output BQ. (b) Typical dimensions of the final TFB combiner.

Fig. 6
Fig. 6

Three incoherent combined beams viewed in the (a) near and (b) far fields. The beams maintain equal powers.

Fig. 7
Fig. 7

Near-field intensity of the bundle end face with three equal-powered sources. (a)–(c) Individual lasers are seeded into the three-fiber TFB entries, in the respective order of their appearance in Table 1. These images and the numerical data listed in Table 1 demonstrate the brightness preservation in cases where not all sources are active.

Tables (1)

Tables Icon

Table 1 BQ and Power Transfer Efficiency Data of the Fibers That Seeded the Large-Core TFB Combiner

Metrics