Abstract

Compact microspheres with high-quality (Q) whispering gallery modes are required for many applications involving liquid immersion, such as sensing nanoparticles and studying resonant radiative pressure effects. We show that high-index (1.9 and 2.1) barium titanate glass (BTG) microspheres are perfect candidates for these applications due to their high-Q (104 in the 11001600nm range) resonances evanescently excited in spheres with diameters of 415μm. By reattaching the spheres at different positions along a tapered optical fiber, we show that the coupling constant exponentially increases with thinner fiber diameters. We demonstrate the close to critical coupling regime with intrinsic Q=3×104 for water immersed 14μm BTG spheres.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription