Abstract

Optical frequency comb (OFC) generated using cascaded intensity and phase modulators was experimentally demonstrated. Very flat OFC can be achieved by cascading intensity and phase modulators driven directly by sinusoidal waveform, where chirped fiber Bragg grating or specially tailored radio frequency waveforms are not required. It is found that the spectral flatness of OFC is related to direct current (DC) bias of intensity modulator and the optimum ratio of DC bias to half-wave voltage is 0.35. In the experiment, 15 comb lines within 1dB spectral power variation are obtained at 10GHz microwave frequency. The experimental results agree well with the simulation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
    [CrossRef]
  2. E. Frumker and Y. Silberberg, Opt. Lett. 32, 1384 (2007).
    [CrossRef] [PubMed]
  3. S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
    [CrossRef]
  4. M. Hirano and A. Morimoto, Opt. Rev. 18, 13 (2011).
    [CrossRef]
  5. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
    [CrossRef] [PubMed]
  6. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
    [CrossRef]
  7. T. Sakamoto, T. Kawanishi, and M. Izutsu, Electron. Lett. 43, 1039 (2007).
    [CrossRef]
  8. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, Electron. Lett. 43, 1040 (2007).
    [CrossRef]
  9. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, J. Lightwave Technol. 21, 2705 (2003).
    [CrossRef]
  10. V. Torres-Company, J. Lancis, and P. Andérs, Opt. Lett. 33, 1822 (2008).
    [CrossRef] [PubMed]

2011

M. Hirano and A. Morimoto, Opt. Rev. 18, 13 (2011).
[CrossRef]

2010

2008

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

V. Torres-Company, J. Lancis, and P. Andérs, Opt. Lett. 33, 1822 (2008).
[CrossRef] [PubMed]

2007

E. Frumker and Y. Silberberg, Opt. Lett. 32, 1384 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

T. Sakamoto, T. Kawanishi, and M. Izutsu, Electron. Lett. 43, 1039 (2007).
[CrossRef]

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, Electron. Lett. 43, 1040 (2007).
[CrossRef]

2003

1999

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

Andérs, P.

Bennett, S.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

Burr, E.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

Cai, B.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

Delfyett, P. J.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Frumker, E.

Fujiwara, M.

Gee, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Gough, O.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

Hirano, M.

M. Hirano and A. Morimoto, Opt. Rev. 18, 13 (2011).
[CrossRef]

Huang, C.-B.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Iwatsuki, K.

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, Electron. Lett. 43, 1039 (2007).
[CrossRef]

Jiang, Z.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Kani, J.

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, Electron. Lett. 43, 1039 (2007).
[CrossRef]

Komukai, T.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, Electron. Lett. 43, 1040 (2007).
[CrossRef]

Lancis, J.

Leaird, D. E.

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Long, C. M.

Morimoto, A.

M. Hirano and A. Morimoto, Opt. Rev. 18, 13 (2011).
[CrossRef]

Ozdur, I.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Ozharar, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Quinlan, F.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, Electron. Lett. 43, 1039 (2007).
[CrossRef]

Seeds, A. J.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

Silberberg, Y.

Supradeepa, V. R.

Suzuki, H.

Suzuki, K.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, Electron. Lett. 43, 1040 (2007).
[CrossRef]

Takachio, N.

Takada, A.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, Electron. Lett. 43, 1040 (2007).
[CrossRef]

Teshima, M.

Torres-Company, V.

Weiner, A. M.

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Wu, R.

Yamamoto, T.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, Electron. Lett. 43, 1040 (2007).
[CrossRef]

Electron. Lett.

T. Sakamoto, T. Kawanishi, and M. Izutsu, Electron. Lett. 43, 1039 (2007).
[CrossRef]

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, Electron. Lett. 43, 1040 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, IEEE Photon. Technol. Lett. 11, 551 (1999).
[CrossRef]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Opt. Lett.

Opt. Rev.

M. Hirano and A. Morimoto, Opt. Rev. 18, 13 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of OFC generated by cascading intensity and phase modulators (MS: microwave source, IM: intensity modulator, PM: phase modulator, PS: phase shift).

Fig. 2
Fig. 2

(a) Generated OFC when Γ B = 0.5 π . (b) The microwave waveform applied on phase modulator, cosine curve (black solid line) and parabolic curve (red dashed line). (c) Intensity modulation curve (black solid line Γ B = 0.5 π , red dashed line Γ B < 0.5 π ). (d) Generated OFC when Γ B = 0.35 π .

Fig. 3
Fig. 3

(a) Relation between the flatness of OFC (A) and the ratio of DC bias to half-wave voltage (x), and flat OFC can be obtained when setting DC bias to an optimum value. (b) Relation between the number of comb lines (N) and phase modulation index ( Δ θ ).

Fig. 4
Fig. 4

Experimentally generated OFC (a) when Γ B = π / 2 . (b) when Γ B = 0.35 π .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E out = E int exp ( i π V p V π cos ω m t ) = E int exp ( i Δ θ cos ω m t ) ,
cos w m t = 1 ( w m t ) 2 2 ! + ( w m t ) 4 4 ! .
E int = E in sin 2 [ π 2 V π ( V DC + V A cos ω m t ) ] = E in sin 2 [ 1 2 ( Γ B + Γ m cos ω m t ) ] ,
E int = E in 2 [ 1 + sin δ J 0 ( Γ m ) ] + E in cos δ l = 0 J 2 l + 1 ( Γ m ) · sin ( 2 l + 1 ) ω m t + E in sin δ l = 1 J 2 l ( Γ m ) sin 2 l ω m t .

Metrics