Abstract

In this Letter, a pulsed digital holographic approach for detecting the three-dimensional (3D) field distribution of a freely propagating single terahertz (THz) pulse based on an electro-optic (E-O) sampling technique is proposed, by which the 3D field distribution of a single THz pulse sampled at different time points can be recorded in real-time on a series of subholograms and will be finally reconstructed as a series of two-dimensional spatial electric field distributions in a time series with a time resolution of femtosecond order. Simulation is carried out to demonstrate the process of the implementation, which confirmed the feasibility of the proposal.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Jiang and X.-C. Zhang, Opt. Lett. 23, 1114 (1998).
    [CrossRef]
  2. Z. Jiang, F. G. Sun, and X.-C. Zhang, Opt. Lett. 24, 1245(1999).
    [CrossRef]
  3. J. Shan, A. S. Weling, E. Knoesel, L. Bartels, M. Bonn, A. Nahata, G. A. Reider, and T. F. Heinz, Opt. Lett. 25, 426(2000).
    [CrossRef]
  4. S. P. Jamison, J. L. Shen, A. M. MacLeod, W. A. Gillespie, and D. A. Jaroszynski, Opt. Lett. 28, 1710 (2003).
    [CrossRef] [PubMed]
  5. K. Y. Kim, B. Yellampalle, G. Rodriguez, R. D. Averitt, A. J. Taylor, and J. H. Glownia, Appl. Phys. Lett. 88, 041123(2006).
    [CrossRef]
  6. Y. Kawada, T. Yasuda, H. Takahashi, and S. Aoshima, Opt. Lett. 33, 180 (2008).
    [CrossRef] [PubMed]
  7. K. Y. Kim, B. Yellampalle, A. J. Taylor, G. Rodriguez, and J. H. Glownia, Opt. Lett. 32, 1968 (2007).
    [CrossRef] [PubMed]
  8. Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
    [CrossRef]
  9. J. van Tiborg, C. B. Schroeder, Cs. Tóth, C. G. R. Geddes, E. Esarey, and W. P. Leemans, Opt. Lett. 32, 313 (2007).
    [CrossRef]
  10. K. Y. Kim, B. Yellampalle, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Phys. Rev. Lett. 100, 135002 (2008).
    [CrossRef] [PubMed]
  11. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, J. Opt. Soc. Am. B 18, 313 (2001).
    [CrossRef]
  12. Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, Opt. Lett. 27, 22 (2002).
    [CrossRef]
  13. X. Wang, H. Zhai, and G. Mu, Opt. Lett. 31, 1636 (2006).
    [CrossRef] [PubMed]

2008 (2)

K. Y. Kim, B. Yellampalle, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Phys. Rev. Lett. 100, 135002 (2008).
[CrossRef] [PubMed]

Y. Kawada, T. Yasuda, H. Takahashi, and S. Aoshima, Opt. Lett. 33, 180 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

X. Wang, H. Zhai, and G. Mu, Opt. Lett. 31, 1636 (2006).
[CrossRef] [PubMed]

K. Y. Kim, B. Yellampalle, G. Rodriguez, R. D. Averitt, A. J. Taylor, and J. H. Glownia, Appl. Phys. Lett. 88, 041123(2006).
[CrossRef]

2003 (1)

2002 (1)

2001 (1)

2000 (1)

1999 (1)

1998 (1)

1996 (1)

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

Aoshima, S.

Averitt, R. D.

K. Y. Kim, B. Yellampalle, G. Rodriguez, R. D. Averitt, A. J. Taylor, and J. H. Glownia, Appl. Phys. Lett. 88, 041123(2006).
[CrossRef]

Bakker, H. J.

Bartels, L.

Bonn, M.

Centurion, M.

Esarey, E.

Geddes, C. G. R.

Gillespie, W. A.

Glownia, J. H.

K. Y. Kim, B. Yellampalle, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Phys. Rev. Lett. 100, 135002 (2008).
[CrossRef] [PubMed]

K. Y. Kim, B. Yellampalle, A. J. Taylor, G. Rodriguez, and J. H. Glownia, Opt. Lett. 32, 1968 (2007).
[CrossRef] [PubMed]

K. Y. Kim, B. Yellampalle, G. Rodriguez, R. D. Averitt, A. J. Taylor, and J. H. Glownia, Appl. Phys. Lett. 88, 041123(2006).
[CrossRef]

Heinz, T. F.

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

Hong, J.

Jamison, S. P.

Jaroszynski, D. A.

Jiang, Z.

Kawada, Y.

Kim, K. Y.

K. Y. Kim, B. Yellampalle, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Phys. Rev. Lett. 100, 135002 (2008).
[CrossRef] [PubMed]

K. Y. Kim, B. Yellampalle, A. J. Taylor, G. Rodriguez, and J. H. Glownia, Opt. Lett. 32, 1968 (2007).
[CrossRef] [PubMed]

K. Y. Kim, B. Yellampalle, G. Rodriguez, R. D. Averitt, A. J. Taylor, and J. H. Glownia, Appl. Phys. Lett. 88, 041123(2006).
[CrossRef]

Knoesel, E.

Leemans, W. P.

Liu, Z.

MacLeod, A. M.

Mu, G.

Nahata, A.

Nienhuys, H.-K.

Panotopoulos, G.

Planken, P. C. M.

Psaltis, D.

Reider, G. A.

Rodriguez, G.

K. Y. Kim, B. Yellampalle, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Phys. Rev. Lett. 100, 135002 (2008).
[CrossRef] [PubMed]

K. Y. Kim, B. Yellampalle, A. J. Taylor, G. Rodriguez, and J. H. Glownia, Opt. Lett. 32, 1968 (2007).
[CrossRef] [PubMed]

K. Y. Kim, B. Yellampalle, G. Rodriguez, R. D. Averitt, A. J. Taylor, and J. H. Glownia, Appl. Phys. Lett. 88, 041123(2006).
[CrossRef]

Schroeder, C. B.

Shan, J.

Shen, J. L.

Sun, F. G.

Takahashi, H.

Taylor, A. J.

K. Y. Kim, B. Yellampalle, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Phys. Rev. Lett. 100, 135002 (2008).
[CrossRef] [PubMed]

K. Y. Kim, B. Yellampalle, A. J. Taylor, G. Rodriguez, and J. H. Glownia, Opt. Lett. 32, 1968 (2007).
[CrossRef] [PubMed]

K. Y. Kim, B. Yellampalle, G. Rodriguez, R. D. Averitt, A. J. Taylor, and J. H. Glownia, Appl. Phys. Lett. 88, 041123(2006).
[CrossRef]

Tóth, Cs.

van Tiborg, J.

Wang, X.

Weling, A. S.

Wenckebach, T.

Wu, Q.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

Yasuda, T.

Yellampalle, B.

K. Y. Kim, B. Yellampalle, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Phys. Rev. Lett. 100, 135002 (2008).
[CrossRef] [PubMed]

K. Y. Kim, B. Yellampalle, A. J. Taylor, G. Rodriguez, and J. H. Glownia, Opt. Lett. 32, 1968 (2007).
[CrossRef] [PubMed]

K. Y. Kim, B. Yellampalle, G. Rodriguez, R. D. Averitt, A. J. Taylor, and J. H. Glownia, Appl. Phys. Lett. 88, 041123(2006).
[CrossRef]

Zhai, H.

Zhang, X.-C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the measurement approach. The inset shows that each reference subpulse has a different spatial angle ( α i , β i , γ i ) .

Fig. 2
Fig. 2

(a) A partial and magnified compound hologram with THz signal; (b) Fourier spectrum of the entire compound hologram with THz signal; (c) geometric distributions of the 10 rectangular filters in the frequency plane.

Fig. 3
Fig. 3

The 3D field distribution of the reconstructed THz pulse (composed of 10 pieces of 2D field distributions obtained at 10 different time sampling points).

Fig. 4
Fig. 4

The 2D field distribution of the THz pulse at the sampling time of 50 fs . (a) original distribution; (b) reconstructed distribution.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ ψ i ( x , y , t i ) = ϕ i ( x , y , t i ) φ i ( x , y , t i ) = 2 π λ · n 3 2 · E i ( x , y , t i ) · γ 41 · d ,
I 1 = i = 1 N { | O i ( x , y , t i ) exp [ j ϕ i ( x , y , t i ) ] + R i ( x , y , t i ) exp [ j ( x cos α i + y cos β i + z 0 cos γ i ) ] | 2 } ,
E i ( x , y , t i ) = A exp { 1 2 a 2 · [ x 2 + y 2 0.7 ( t i / T ) 2 + 0.75 ] } · [ t i T · exp ( t i 2 T 2 ) ] ,
| D N { 1 2 + 1 2 · cos [ φ 0 ( x , y ) ] } D N { 1 2 + 1 2 · cos [ φ 0 ( x , y ) + Δ φ ] } | = 1 2 · D 2 Q .
Δ φ min = arcsin ( N / 2 Q ) .

Metrics