Abstract

We experimentally investigated thermal nonlinear effects in a hybrid Au/SiO2/SU-8 plasmonic microring resonator for nonlinear switching. Large ohmic loss in the metal layer gave rise to a high rate of light-to-heat conversion in the plasmonic waveguide, causing an intensity-dependent thermo-optic shift in the microring resonance. We obtained 30 times larger resonance shift in the plasmonic microring than in a similar SU-8 dielectric microring. Using an in-plane pump-and-probe configuration, we also demonstrated all-plasmonic nonlinear switching in the plasmonic microring with an on–off switching contrast of 4dB over 50mW input power.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Nat. Photon. 3, 55 (2008).
    [CrossRef]
  2. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, Nano Lett. 8, 1506 (2008).
    [CrossRef] [PubMed]
  3. C. Horvath, D. Bachman, M. Wu, D. Perron, and V. Van, “Polymer hybrid plasmonic waveguides and microring resonators,” IEEE Photon. Technol. Lett. (to be published).
  4. K. K. Tung, W. H. Wong, and E. Y. B. Pun, Appl. Phys. A 80, 621 (2005).
    [CrossRef]
  5. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  6. L. Yang, D. Dai, and S. He, Proc. SPIE 7631, 76310B (2009).
    [CrossRef]
  7. T. Yamane, N. Nagai, S.-I. Katayama, and M. Todoko, J. Appl. Phys. 91, 9772 (2002).
    [CrossRef]
  8. J.-P. Bourgoin, G.-G. Allogho, and A. Haché, J. Appl. Phys. 108, 073520 (2010).
    [CrossRef]
  9. A. K. Sharma and B. D. Gupta, Appl. Opt. 45, 151 (2006).
    [CrossRef] [PubMed]

2010

J.-P. Bourgoin, G.-G. Allogho, and A. Haché, J. Appl. Phys. 108, 073520 (2010).
[CrossRef]

2009

L. Yang, D. Dai, and S. He, Proc. SPIE 7631, 76310B (2009).
[CrossRef]

2008

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Nat. Photon. 3, 55 (2008).
[CrossRef]

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, Nano Lett. 8, 1506 (2008).
[CrossRef] [PubMed]

2006

2005

K. K. Tung, W. H. Wong, and E. Y. B. Pun, Appl. Phys. A 80, 621 (2005).
[CrossRef]

2002

T. Yamane, N. Nagai, S.-I. Katayama, and M. Todoko, J. Appl. Phys. 91, 9772 (2002).
[CrossRef]

1985

E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Allogho, G.-G.

J.-P. Bourgoin, G.-G. Allogho, and A. Haché, J. Appl. Phys. 108, 073520 (2010).
[CrossRef]

Bachman, D.

C. Horvath, D. Bachman, M. Wu, D. Perron, and V. Van, “Polymer hybrid plasmonic waveguides and microring resonators,” IEEE Photon. Technol. Lett. (to be published).

Bourgoin, J.-P.

J.-P. Bourgoin, G.-G. Allogho, and A. Haché, J. Appl. Phys. 108, 073520 (2010).
[CrossRef]

Brongersma, M. L.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, Nano Lett. 8, 1506 (2008).
[CrossRef] [PubMed]

Dai, D.

L. Yang, D. Dai, and S. He, Proc. SPIE 7631, 76310B (2009).
[CrossRef]

Gupta, B. D.

Haché, A.

J.-P. Bourgoin, G.-G. Allogho, and A. Haché, J. Appl. Phys. 108, 073520 (2010).
[CrossRef]

He, S.

L. Yang, D. Dai, and S. He, Proc. SPIE 7631, 76310B (2009).
[CrossRef]

Horvath, C.

C. Horvath, D. Bachman, M. Wu, D. Perron, and V. Van, “Polymer hybrid plasmonic waveguides and microring resonators,” IEEE Photon. Technol. Lett. (to be published).

Katayama, S.-I.

T. Yamane, N. Nagai, S.-I. Katayama, and M. Todoko, J. Appl. Phys. 91, 9772 (2002).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Nat. Photon. 3, 55 (2008).
[CrossRef]

Melosh, N. A.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, Nano Lett. 8, 1506 (2008).
[CrossRef] [PubMed]

Nagai, N.

T. Yamane, N. Nagai, S.-I. Katayama, and M. Todoko, J. Appl. Phys. 91, 9772 (2002).
[CrossRef]

Pala, R. A.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, Nano Lett. 8, 1506 (2008).
[CrossRef] [PubMed]

Perron, D.

C. Horvath, D. Bachman, M. Wu, D. Perron, and V. Van, “Polymer hybrid plasmonic waveguides and microring resonators,” IEEE Photon. Technol. Lett. (to be published).

Pun, E. Y. B.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, Appl. Phys. A 80, 621 (2005).
[CrossRef]

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Nat. Photon. 3, 55 (2008).
[CrossRef]

Sharma, A. K.

Shimizu, K. T.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, Nano Lett. 8, 1506 (2008).
[CrossRef] [PubMed]

Stockman, M. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Nat. Photon. 3, 55 (2008).
[CrossRef]

Todoko, M.

T. Yamane, N. Nagai, S.-I. Katayama, and M. Todoko, J. Appl. Phys. 91, 9772 (2002).
[CrossRef]

Tung, K. K.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, Appl. Phys. A 80, 621 (2005).
[CrossRef]

Van, V.

C. Horvath, D. Bachman, M. Wu, D. Perron, and V. Van, “Polymer hybrid plasmonic waveguides and microring resonators,” IEEE Photon. Technol. Lett. (to be published).

Wong, W. H.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, Appl. Phys. A 80, 621 (2005).
[CrossRef]

Wu, M.

C. Horvath, D. Bachman, M. Wu, D. Perron, and V. Van, “Polymer hybrid plasmonic waveguides and microring resonators,” IEEE Photon. Technol. Lett. (to be published).

Yamane, T.

T. Yamane, N. Nagai, S.-I. Katayama, and M. Todoko, J. Appl. Phys. 91, 9772 (2002).
[CrossRef]

Yang, L.

L. Yang, D. Dai, and S. He, Proc. SPIE 7631, 76310B (2009).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Nat. Photon. 3, 55 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. A

K. K. Tung, W. H. Wong, and E. Y. B. Pun, Appl. Phys. A 80, 621 (2005).
[CrossRef]

J. Appl. Phys.

T. Yamane, N. Nagai, S.-I. Katayama, and M. Todoko, J. Appl. Phys. 91, 9772 (2002).
[CrossRef]

J.-P. Bourgoin, G.-G. Allogho, and A. Haché, J. Appl. Phys. 108, 073520 (2010).
[CrossRef]

Nano Lett.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, Nano Lett. 8, 1506 (2008).
[CrossRef] [PubMed]

Nat. Photon.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Nat. Photon. 3, 55 (2008).
[CrossRef]

Proc. SPIE

L. Yang, D. Dai, and S. He, Proc. SPIE 7631, 76310B (2009).
[CrossRef]

Other

C. Horvath, D. Bachman, M. Wu, D. Perron, and V. Van, “Polymer hybrid plasmonic waveguides and microring resonators,” IEEE Photon. Technol. Lett. (to be published).

E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the hybrid Au / SiO 2 / SU - 8 plasmonic waveguide structure; modal distribution of the electric field in the waveguide for (b) quasi-TM mode and (c) quasi-TE mode.

Fig. 2
Fig. 2

(a) Schematic of the nonlinear switching experimental setup. Inset: optical micrograph of the fabricated 25 μm radius plasmonic microring resonator. Arrow indicates gold boundary. (b) Measured spectral response of the plasmonic mode in the microring resonator.

Fig. 3
Fig. 3

Measured spectral scans for (a) TM mode and (b) TE mode in the plasmonic microring at different input powers P in . Arrows show increasing P in and shift in the resonance wavelength from initial position. (c) Plot of the resonance wavelength as a function of P in for each polarization.

Fig. 4
Fig. 4

Static temperature distribution relative to 273 K in the waveguide for an input optical power of 1 mW : (a) TM mode and (b) TE mode in the plasmonic waveguide, (c) TM mode in a dielectric SU-8 waveguide with no underlying Au layer.

Fig. 5
Fig. 5

Pump-and-probe switching curves of TE and TM modes in the plasmonic microring showing the transmitted probe power as a function of the input pump power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

· ( K T ) = q ,
q = 1 2 J · E = 1 2 σ | E | 2 ,

Metrics