Abstract

Using the phenomena of linear and circular birefringence, we propose a device that can alter general elliptical polarization of a beam by a predetermined amount, thereby allowing conversion between linearly polarized light and circularly polarized light or changes to the handedness of the polarization. Based on an analogy with two-state adiabatic following of quantum optics, the proposed device is insensitive to the frequency of the light—it serves as an achromatic polarization retarder.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).
  2. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).
  3. P. S. Theocaris and E. E. Gdoutos, Matrix Theory of Photoelasticity (Springer, 1979).
  4. D. Goldstein and E. Collett, Polarized Light (CRC Press, 2003).
    [CrossRef]
  5. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
  6. R. C. Jones, J. Opt. Soc. Am. 31, 500 (1941).
    [CrossRef]
  7. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).
  8. B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).
  9. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
    [CrossRef] [PubMed]
  10. N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55 (2001).
    [CrossRef]
  11. B. W. Shore, Acta Phys. Slovaca 58, 243 (2008).
    [CrossRef]
  12. M. Ya. Darsht, B. Ya. Zel’dovich, and N. D. Kundikova, Russ. Phys. J. 40, 891 (1997).
    [CrossRef]
  13. D. W. Berreman, J. Opt. Soc. Am. 63, 1374(1973).
    [CrossRef]
  14. Z. Zhuang, Y. J. Kim, and J. S. Patel, Appl. Phys. Lett. 76, 3995 (2000).
    [CrossRef]
  15. P. Hariharan, Prog. Opt. 48, 149 (2005).
    [CrossRef]
  16. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  17. H. K. Aben, Exp. Mech. 6, 13 (1966).
    [CrossRef]

2008

B. W. Shore, Acta Phys. Slovaca 58, 243 (2008).
[CrossRef]

2007

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

2005

P. Hariharan, Prog. Opt. 48, 149 (2005).
[CrossRef]

2003

D. Goldstein and E. Collett, Polarized Light (CRC Press, 2003).
[CrossRef]

2001

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
[CrossRef] [PubMed]

N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55 (2001).
[CrossRef]

2000

Z. Zhuang, Y. J. Kim, and J. S. Patel, Appl. Phys. Lett. 76, 3995 (2000).
[CrossRef]

1997

M. Ya. Darsht, B. Ya. Zel’dovich, and N. D. Kundikova, Russ. Phys. J. 40, 891 (1997).
[CrossRef]

1992

R. W. Boyd, Nonlinear Optics (Academic, 1992).

1990

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).

1987

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

1979

P. S. Theocaris and E. E. Gdoutos, Matrix Theory of Photoelasticity (Springer, 1979).

1977

M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).

1975

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

1973

1966

H. K. Aben, Exp. Mech. 6, 13 (1966).
[CrossRef]

1941

Aben, H. K.

H. K. Aben, Exp. Mech. 6, 13 (1966).
[CrossRef]

Allen, L.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Azzam, M. A.

M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).

Bashara, N. M.

M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).

Bergmann, K.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
[CrossRef] [PubMed]

N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55 (2001).
[CrossRef]

Berreman, D. W.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Collett, E.

D. Goldstein and E. Collett, Polarized Light (CRC Press, 2003).
[CrossRef]

Darsht, M. Ya.

M. Ya. Darsht, B. Ya. Zel’dovich, and N. D. Kundikova, Russ. Phys. J. 40, 891 (1997).
[CrossRef]

Eberly, J. H.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

Fleischhauer, M.

N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55 (2001).
[CrossRef]

Gdoutos, E. E.

P. S. Theocaris and E. E. Gdoutos, Matrix Theory of Photoelasticity (Springer, 1979).

Goldstein, D.

D. Goldstein and E. Collett, Polarized Light (CRC Press, 2003).
[CrossRef]

Halfmann, T.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
[CrossRef] [PubMed]

Hariharan, P.

P. Hariharan, Prog. Opt. 48, 149 (2005).
[CrossRef]

Jones, R. C.

Kim, Y. J.

Z. Zhuang, Y. J. Kim, and J. S. Patel, Appl. Phys. Lett. 76, 3995 (2000).
[CrossRef]

Kundikova, N. D.

M. Ya. Darsht, B. Ya. Zel’dovich, and N. D. Kundikova, Russ. Phys. J. 40, 891 (1997).
[CrossRef]

Patel, J. S.

Z. Zhuang, Y. J. Kim, and J. S. Patel, Appl. Phys. Lett. 76, 3995 (2000).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

Shore, B. W.

B. W. Shore, Acta Phys. Slovaca 58, 243 (2008).
[CrossRef]

N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55 (2001).
[CrossRef]

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
[CrossRef] [PubMed]

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

Theocaris, P. S.

P. S. Theocaris and E. E. Gdoutos, Matrix Theory of Photoelasticity (Springer, 1979).

Vitanov, N. V.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
[CrossRef] [PubMed]

N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55 (2001).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Zel’dovich, B. Ya.

M. Ya. Darsht, B. Ya. Zel’dovich, and N. D. Kundikova, Russ. Phys. J. 40, 891 (1997).
[CrossRef]

Zhuang, Z.

Z. Zhuang, Y. J. Kim, and J. S. Patel, Appl. Phys. Lett. 76, 3995 (2000).
[CrossRef]

Acta Phys. Slovaca

B. W. Shore, Acta Phys. Slovaca 58, 243 (2008).
[CrossRef]

Adv. At. Mol. Opt. Phys.

N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55 (2001).
[CrossRef]

Annu. Rev. Phys. Chem.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Z. Zhuang, Y. J. Kim, and J. S. Patel, Appl. Phys. Lett. 76, 3995 (2000).
[CrossRef]

Exp. Mech.

H. K. Aben, Exp. Mech. 6, 13 (1966).
[CrossRef]

J. Opt. Soc. Am.

Prog. Opt.

P. Hariharan, Prog. Opt. 48, 149 (2005).
[CrossRef]

Russ. Phys. J.

M. Ya. Darsht, B. Ya. Zel’dovich, and N. D. Kundikova, Russ. Phys. J. 40, 891 (1997).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic, 1992).

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1987).

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).

P. S. Theocaris and E. E. Gdoutos, Matrix Theory of Photoelasticity (Springer, 1979).

D. Goldstein and E. Collett, Polarized Light (CRC Press, 2003).
[CrossRef]

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Electric field amplitudes | E x | 2 , | E y | 2 as a function of the propagation distance z for three different wavelengths: λ = 434 nm (red dotted curve); λ = 589 nm (blue solid curve); λ = 760 nm (black dashed curve). Simulations are made with the smooth function choice from Eq. (18) and for a total thickness of the medium L = 1 m .

Tables (1)

Tables Icon

Table 1 Quartz Optical Properties

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

2 E x z 2 + 2 i k E x z k 2 E x = ω 2 c 2 ( n e 2 E x + i G E y ) ,
2 E y z 2 + 2 i k E y z k 2 E y = ω 2 c 2 ( i G E x n o 2 E y ) ,
| 2 E x , y z 2 | | 2 k E x , y z | .
i z [ E x E y ] = ω 2 c n o [ n e 2 n o 2 i G i G 0 ] [ E x E y ] .
i z [ E x E y ] = 1 2 [ Δ i Ω i Ω Δ ] [ E x E y ] ,
Ω = ω G c n o , Δ = ω ( n o 2 n e 2 ) 2 c n o .
i z [ E x A E y A ] = [ 1 2 Ω 2 + Δ 2 φ / z φ / z 1 2 Ω 2 + Δ 2 ] [ E x A E y A ] .
J ( z ) = R ( z ) J A ( z ) ,
R ( z ) = [ cos ( 2 φ ) i sin ( 2 φ ) i sin ( 2 φ ) cos ( 2 φ ) ] ,
tan ( 2 φ ) = Ω Δ .
| φ z | | 1 2 Ω 2 + Δ 2 | .
0 L Ω 2 + Δ 2 d z 4 π .
U A ( L , 0 ) = [ exp ( i η ) 0 0 exp ( i η ) ] ,
η = 0 L 1 2 Ω 2 + Δ 2 d z .
U ( L , 0 ) = R ( L ) U A ( L , 0 ) R ( 0 ) ,
U 11 ( L , 0 ) = e i η cos φ ( 0 ) cos φ ( L ) + e i η sin φ ( 0 ) sin φ ( L ) ,
U 12 ( L , 0 ) = i e i η sin φ ( 0 ) cos φ ( L ) i e i η cos φ ( 0 ) sin φ ( L ) ,
U 21 ( L , 0 ) = i e i η sin φ ( 0 ) cos φ ( L ) i e i η cos φ ( 0 ) sin φ ( L ) ,
U 22 ( L , 0 ) = e i η cos φ ( 0 ) cos φ ( L ) + e i η sin φ ( 0 ) sin φ ( L ) .
E x ( L ) = e i η sin φ ( L ) ,
E y ( L ) = i e i η cos φ ( L ) .
φ Ω / Δ 0 + 0 , φ Ω / Δ ± ± π / 4 , φ Ω / Δ 0 π / 2 .
Ω ( z ) = Ω 0 , Δ ( z ) = Δ 0 sin [ π ( z / L 1 / 2 ) ] .

Metrics