Abstract

Two different laser phase noise measurement techniques are compared. One of these two techniques is based on a conventional and low-cost delay line system, which is usually set up for the linewidth measurement of semiconductor lasers. The results obtained with both techniques on a high-spectral-purity laser agree well and confirm the interest of the low-cost technique. Moreover, an extraction of the laser linewidth using computer-aided design tools is performed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Derickson, Fiber Optic Test and Measurement(Prentice-Hall, 1998).
  2. B. Onillon, S. Constant, and O. Llopis, in Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition (IEEE, 2005), p. 545.
    [CrossRef]
  3. H. Ludvigsen, M. Tossavainen, and M. Kaivola, Opt. Commun. 155, 180 (1998).
    [CrossRef]
  4. H. Ludvigsen and E. Bodtker, Opt. Commun. 110, 595(1994).
    [CrossRef]
  5. W. V. Sorin, K. W. Chang, G. A. Conrad, and P. R. Hernday, J. Lightwave Technol. 10, 787 (1992).
    [CrossRef]
  6. Hewlett Packard, “Phase noise characterization of microwave oscillators,” product note 11729C-2 (Hewlett Packard, 1985).
  7. S. Camatel and V. Ferrero, J. Lightwave Technol. 26, 3048 (2008).
    [CrossRef]
  8. P. Gallion and G. Debarge, IEEE J. Quantum Electron. 20, 343 (1984).
    [CrossRef]
  9. L. B. Mercer, J. Lightwave Technol. 9, 485 (1991).
    [CrossRef]
  10. J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, IEEE J. Quantum Electron. 41, 549 (2005).
    [CrossRef]
  11. A. Godone, S. Micalizio, and F. Levi, Metrologia 45, 313(2008).
    [CrossRef]
  12. G. Di Domenico, S. Schilt, and P. Thomann, Appl. Opt. 49, 4801 (2010).
    [CrossRef] [PubMed]
  13. E. Ngoya and R. Larcheveque, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1996), Vol. 3, p. 1365.

2010 (1)

2008 (2)

A. Godone, S. Micalizio, and F. Levi, Metrologia 45, 313(2008).
[CrossRef]

S. Camatel and V. Ferrero, J. Lightwave Technol. 26, 3048 (2008).
[CrossRef]

2005 (2)

B. Onillon, S. Constant, and O. Llopis, in Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition (IEEE, 2005), p. 545.
[CrossRef]

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, IEEE J. Quantum Electron. 41, 549 (2005).
[CrossRef]

1998 (2)

H. Ludvigsen, M. Tossavainen, and M. Kaivola, Opt. Commun. 155, 180 (1998).
[CrossRef]

D. Derickson, Fiber Optic Test and Measurement(Prentice-Hall, 1998).

1996 (1)

E. Ngoya and R. Larcheveque, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1996), Vol. 3, p. 1365.

1994 (1)

H. Ludvigsen and E. Bodtker, Opt. Commun. 110, 595(1994).
[CrossRef]

1992 (1)

W. V. Sorin, K. W. Chang, G. A. Conrad, and P. R. Hernday, J. Lightwave Technol. 10, 787 (1992).
[CrossRef]

1991 (1)

L. B. Mercer, J. Lightwave Technol. 9, 485 (1991).
[CrossRef]

1985 (1)

Hewlett Packard, “Phase noise characterization of microwave oscillators,” product note 11729C-2 (Hewlett Packard, 1985).

1984 (1)

P. Gallion and G. Debarge, IEEE J. Quantum Electron. 20, 343 (1984).
[CrossRef]

Alabedra, R.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, IEEE J. Quantum Electron. 41, 549 (2005).
[CrossRef]

Bellon, M.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, IEEE J. Quantum Electron. 41, 549 (2005).
[CrossRef]

Bodtker, E.

H. Ludvigsen and E. Bodtker, Opt. Commun. 110, 595(1994).
[CrossRef]

Camatel, S.

Chang, K. W.

W. V. Sorin, K. W. Chang, G. A. Conrad, and P. R. Hernday, J. Lightwave Technol. 10, 787 (1992).
[CrossRef]

Conrad, G. A.

W. V. Sorin, K. W. Chang, G. A. Conrad, and P. R. Hernday, J. Lightwave Technol. 10, 787 (1992).
[CrossRef]

Constant, S.

B. Onillon, S. Constant, and O. Llopis, in Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition (IEEE, 2005), p. 545.
[CrossRef]

Debarge, G.

P. Gallion and G. Debarge, IEEE J. Quantum Electron. 20, 343 (1984).
[CrossRef]

Derickson, D.

D. Derickson, Fiber Optic Test and Measurement(Prentice-Hall, 1998).

Di Domenico, G.

Ferrero, V.

Gallion, P.

P. Gallion and G. Debarge, IEEE J. Quantum Electron. 20, 343 (1984).
[CrossRef]

Godone, A.

A. Godone, S. Micalizio, and F. Levi, Metrologia 45, 313(2008).
[CrossRef]

Gosalbes, J. M.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, IEEE J. Quantum Electron. 41, 549 (2005).
[CrossRef]

Hernday, P. R.

W. V. Sorin, K. W. Chang, G. A. Conrad, and P. R. Hernday, J. Lightwave Technol. 10, 787 (1992).
[CrossRef]

Kaivola, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, Opt. Commun. 155, 180 (1998).
[CrossRef]

Larcheveque, R.

E. Ngoya and R. Larcheveque, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1996), Vol. 3, p. 1365.

Levi, F.

A. Godone, S. Micalizio, and F. Levi, Metrologia 45, 313(2008).
[CrossRef]

Llopis, O.

B. Onillon, S. Constant, and O. Llopis, in Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition (IEEE, 2005), p. 545.
[CrossRef]

Ludvigsen, H.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, Opt. Commun. 155, 180 (1998).
[CrossRef]

H. Ludvigsen and E. Bodtker, Opt. Commun. 110, 595(1994).
[CrossRef]

Mercer, L. B.

L. B. Mercer, J. Lightwave Technol. 9, 485 (1991).
[CrossRef]

Micalizio, S.

A. Godone, S. Micalizio, and F. Levi, Metrologia 45, 313(2008).
[CrossRef]

Myara, M.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, IEEE J. Quantum Electron. 41, 549 (2005).
[CrossRef]

Ngoya, E.

E. Ngoya and R. Larcheveque, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1996), Vol. 3, p. 1365.

Onillon, B.

B. Onillon, S. Constant, and O. Llopis, in Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition (IEEE, 2005), p. 545.
[CrossRef]

Orsal, B.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, IEEE J. Quantum Electron. 41, 549 (2005).
[CrossRef]

Perez, J. P.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, IEEE J. Quantum Electron. 41, 549 (2005).
[CrossRef]

Schilt, S.

Signoret, P.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, IEEE J. Quantum Electron. 41, 549 (2005).
[CrossRef]

Sorin, W. V.

W. V. Sorin, K. W. Chang, G. A. Conrad, and P. R. Hernday, J. Lightwave Technol. 10, 787 (1992).
[CrossRef]

Thomann, P.

Tossavainen, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, Opt. Commun. 155, 180 (1998).
[CrossRef]

Tourrenc, J. P.

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, IEEE J. Quantum Electron. 41, 549 (2005).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

J. P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J. P. Perez, J. M. Gosalbes, R. Alabedra, and B. Orsal, IEEE J. Quantum Electron. 41, 549 (2005).
[CrossRef]

P. Gallion and G. Debarge, IEEE J. Quantum Electron. 20, 343 (1984).
[CrossRef]

J. Lightwave Technol. (3)

L. B. Mercer, J. Lightwave Technol. 9, 485 (1991).
[CrossRef]

W. V. Sorin, K. W. Chang, G. A. Conrad, and P. R. Hernday, J. Lightwave Technol. 10, 787 (1992).
[CrossRef]

S. Camatel and V. Ferrero, J. Lightwave Technol. 26, 3048 (2008).
[CrossRef]

Metrologia (1)

A. Godone, S. Micalizio, and F. Levi, Metrologia 45, 313(2008).
[CrossRef]

Opt. Commun. (2)

H. Ludvigsen, M. Tossavainen, and M. Kaivola, Opt. Commun. 155, 180 (1998).
[CrossRef]

H. Ludvigsen and E. Bodtker, Opt. Commun. 110, 595(1994).
[CrossRef]

Other (4)

D. Derickson, Fiber Optic Test and Measurement(Prentice-Hall, 1998).

B. Onillon, S. Constant, and O. Llopis, in Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition (IEEE, 2005), p. 545.
[CrossRef]

Hewlett Packard, “Phase noise characterization of microwave oscillators,” product note 11729C-2 (Hewlett Packard, 1985).

E. Ngoya and R. Larcheveque, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1996), Vol. 3, p. 1365.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measurement bench for both approaches; the acousto-optic modulator is used in the self-heterodyne technique and removed for the homodyne technique. G, amplifier gain.

Fig. 2
Fig. 2

Phase noise measurement of a high- quality fiber laser (Koheras Adjustik) delivering 30 mW optical power at λ = 1.55 μm using the two techniques (homodyne technique in blue and self-heterodyne technique in red).

Fig. 3
Fig. 3

Laser power spectrum versus the offset from the carrier frequency simulated from the phase noise data using Agilent Advanced Design System and the envelope simulation technique.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

A 1 ( t ) = A 2 cos ( 2 π f o ( t τ ) + Δ f f m cos ( 2 π f m ( t τ ) ) ) ,
A 2 ( t ) = A 2 cos ( 2 π f o t + Δ f f m cos ( 2 π f m t ) ) ,
I ( t ) = S A 2 4 cos ( 2 π f o τ + 2 Δ f f m sin ( π f m τ ) sin ( 2 π f m ( t τ 2 ) ) ) ,
I ( t ) = S A 2 4 cos ( φ + x ) ,
K m = S P 2 sin ( φ ) 2 π τ sin ( π f m τ ) π f m τ ,
K m eff = K m 2 = Δ I peak 2 2 π τ sin ( π f m τ ) π f m τ .
S Δ f = S V output R 2 K m eff 2 ,
L ( f m ) dBc / Hz = 10 log ( S Δ f ( f m ) 2 f m 2 ) .
L RF ( f m ) = 20 log ( 2 π τ sin ( π f m τ ) π f m τ ) + 10 log ( S Δ f ) .
L laser ( f m ) = L RF ( f m ) 20 log ( 2 sin ( π f m τ ) ) .
S Δ f ( f ) = k f with     k = 10 6 ( Hz 2 ) .

Metrics