Abstract

We study the propagation of a stochastic electromagnetic beam through a chiral medium. The cross-spectral density matrix is deduced and employed to calculate the changes in the spectral degree of polarization of the beam on propagation. It is shown that the spectral degree of polarization can be modulated by changing the chiral parameter of the medium and the coherent parameter of the beam. Also, it is interesting to find that the spectral degree of polarization of a stochastic electromagnetic beam on propagation in far zone is different from that of the source.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Pendry, Science 306, 1353 (2004).
    [CrossRef] [PubMed]
  2. S. Bassiri, C. H. Papas, and N. Engheta, J. Opt. Soc. Am. A 5, 1450 (1988).
    [CrossRef]
  3. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Phys. Rev. B 79, 121104 (2009).
    [CrossRef]
  4. E. Bahar, J. Opt. Soc. Am. B 25, 218 (2008).
    [CrossRef]
  5. E. Bahar, J. Opt. Soc. Am. B 25, 1294 (2008).
    [CrossRef]
  6. E. Bahar, J. Opt. Soc. Am. B 26, 364 (2009).
    [CrossRef]
  7. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [CrossRef]
  8. O. Korotkova and E. Wolf, Opt. Commun. 246, 35 (2005).
    [CrossRef]
  9. H. Roychowdhury, G. P. Agrawal, and E. Wolf, J. Opt. Soc. Am. A 23, 940 (2006).
    [CrossRef]
  10. D. Zhao and Y. Zhu, Opt. Lett. 34, 884 (2009).
    [CrossRef] [PubMed]
  11. W. Gao and O. Korotkova, Opt. Commun. 270, 474 (2007).
    [CrossRef]
  12. O. Korotkova, M. Salem, and E. Wolf, Opt. Commun. 233, 225 (2004).
    [CrossRef]
  13. Y. Zhu, D. Zhao, and X. Du, Opt. Express 16, 18437 (2008).
    [CrossRef] [PubMed]
  14. X. Du and D. Zhao, Opt. Express 17, 4257 (2009).
    [CrossRef] [PubMed]
  15. F. Zhuang, X. Du, and D. Zhao, Opt. Lett. 36, 939 (2011).
    [CrossRef] [PubMed]
  16. S. Wang and D. Zhao, Matrix Optics (CHEP-Springer, 2000).

2011 (1)

2009 (4)

2008 (3)

2007 (1)

W. Gao and O. Korotkova, Opt. Commun. 270, 474 (2007).
[CrossRef]

2006 (1)

2005 (1)

O. Korotkova and E. Wolf, Opt. Commun. 246, 35 (2005).
[CrossRef]

2004 (2)

O. Korotkova, M. Salem, and E. Wolf, Opt. Commun. 233, 225 (2004).
[CrossRef]

J. Pendry, Science 306, 1353 (2004).
[CrossRef] [PubMed]

2003 (1)

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

2000 (1)

S. Wang and D. Zhao, Matrix Optics (CHEP-Springer, 2000).

1988 (1)

Agrawal, G. P.

Bahar, E.

Bassiri, S.

Dong, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Du, X.

Engheta, N.

Gao, W.

W. Gao and O. Korotkova, Opt. Commun. 270, 474 (2007).
[CrossRef]

Kafesaki, M.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Korotkova, O.

W. Gao and O. Korotkova, Opt. Commun. 270, 474 (2007).
[CrossRef]

O. Korotkova and E. Wolf, Opt. Commun. 246, 35 (2005).
[CrossRef]

O. Korotkova, M. Salem, and E. Wolf, Opt. Commun. 233, 225 (2004).
[CrossRef]

Koschny, T.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Papas, C. H.

Pendry, J.

J. Pendry, Science 306, 1353 (2004).
[CrossRef] [PubMed]

Roychowdhury, H.

Salem, M.

O. Korotkova, M. Salem, and E. Wolf, Opt. Commun. 233, 225 (2004).
[CrossRef]

Soukoulis, C. M.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Wang, B.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Wang, S.

S. Wang and D. Zhao, Matrix Optics (CHEP-Springer, 2000).

Wolf, E.

H. Roychowdhury, G. P. Agrawal, and E. Wolf, J. Opt. Soc. Am. A 23, 940 (2006).
[CrossRef]

O. Korotkova and E. Wolf, Opt. Commun. 246, 35 (2005).
[CrossRef]

O. Korotkova, M. Salem, and E. Wolf, Opt. Commun. 233, 225 (2004).
[CrossRef]

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

Zhao, D.

Zhou, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Zhu, Y.

Zhuang, F.

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (3)

Opt. Commun. (3)

O. Korotkova and E. Wolf, Opt. Commun. 246, 35 (2005).
[CrossRef]

W. Gao and O. Korotkova, Opt. Commun. 270, 474 (2007).
[CrossRef]

O. Korotkova, M. Salem, and E. Wolf, Opt. Commun. 233, 225 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Lett. A (1)

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

Phys. Rev. B (1)

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, Phys. Rev. B 79, 121104 (2009).
[CrossRef]

Science (1)

J. Pendry, Science 306, 1353 (2004).
[CrossRef] [PubMed]

Other (1)

S. Wang and D. Zhao, Matrix Optics (CHEP-Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of a stochastic electromagnetic beam pro pagating through a chiral medium.

Fig. 2
Fig. 2

Changes in the central spectral degree of polarization ( | ρ | = 0 ), when the stochastic electromagnetic beam propagates through the chiral medium. We chose different chiral parameter γ.

Fig. 3
Fig. 3

Changes in the central spectral degree of polarization of the beam on propagation. We chose different coherent parameters δ x x and δ y y .

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

W ( r 1 , r 2 , ω ) [ W i j ( r 1 , r 2 , ω ) ] = [ E i * ( r 1 , ω ) E j ( r 2 , ω ) ] , ( i = x , y ; j = x , y ) ,
E x ( r , ω ) = E x ( L ) ( r , ω ) + E x ( R ) ( r , ω ) , E y ( r , ω ) = E y ( L ) ( r , ω ) + E y ( R ) ( r , ω ) ,
W ( r 1 , r 2 , ω ) = [ E i * ( r 1 , ω ) E j ( r 2 , ω ) ] = [ ( E i ( L ) ( r 1 , ω ) + E i ( R ) ( r 1 , ω ) ) * ( E j ( L ) ( r 2 , ω ) + E j ( R ) ( r 2 , ω ) ) ] = [ E i ( L ) * ( r 1 , ω ) E j ( L ) ( r 2 , ω ) + E i ( L ) * ( r 1 , ω ) E j ( R ) ( r 2 , ω ) + E i ( R ) * ( r 1 , ω ) E j ( L ) ( r 2 , ω ) + E i ( R ) * ( r 1 , ω ) E j ( R ) ( r 2 , ω ) ] = [ W i j ( L L ) ( r 1 , r 2 , ω ) + W i j ( L R ) ( r 1 , r 2 , ω ) + W i j ( R L ) ( r 1 , r 2 , ω ) + W i j ( R R ) ( r 1 , r 2 , ω ) ] = [ I = L , R J = L , R W i j ( I J ) ( r 1 , r 2 , ω ) ] .
W i j ( I J ) ( ρ 1 , ρ 2 , z , ω ) = k 2 4 π 2 B ( I ) B ( J ) W i j ( I J ) ( ρ 1 , ρ 2 , z = 0 , ω ) × exp { i k 2 [ ( A ( I ) B ( I ) ρ 1 2 A ( J ) B ( J ) ρ 2 2 ) 2 ( ρ 1 · ρ 1 B ( I ) ρ 2 · ρ 2 B ( J ) ) + ( D ( I ) B ( I ) ρ 1 2 D ( J ) B ( J ) ρ 2 2 ) ] } d 2 ρ 1 d 2 ρ 2 ( I = L , R ; J = L , R ) ,
[ A ( L ) B ( L ) C ( L ) D ( L ) ] = [ 1 z / n ( L ) 0 1 ] , [ A ( R ) B ( R ) C ( R ) D ( R ) ] = [ 1 z / n ( R ) 0 1 ] ,
W i j ( I J ) ( ρ 1 , ρ 2 , z = 0 , ω ) = A i A j B i j exp ( ρ 1 2 + ρ 2 2 4 σ 2 ) × exp ( | ρ 2 ρ 1 | 2 2 δ i j 2 ) ,
W i j ( I J ) ( ρ 1 , ρ 2 , z , ω ) = A i A j B i j k 2 4 B ( I ) B ( J ) 1 S i j ( I ) T i j ( I J ) exp [ k 2 4 S i j ( I ) ( ρ 1 B ( I ) ) 2 ] × exp [ i k 2 ( ρ 1 2 B ( I ) ρ 2 2 B ( J ) ) ] exp [ ( U i j ( I J ) ) 2 4 T i j ( I J ) ] ,
S i j ( I ) = 1 4 σ 2 + 1 2 δ i j 2 + i k 2 B ( I ) , T i j ( I J ) = 1 4 σ 2 + 1 2 δ i j 2 i k 2 B ( J ) 1 4 δ i j 4 S i j ( I ) , U i j ( I J ) = i k ( ρ 2 B ( J ) ρ 1 2 δ i j 2 B ( I ) S i j ( I ) ) .
W ( ρ 1 , ρ 2 , z , ω ) = [ I = L , R J = L , R W i j ( I J ) ( ρ 1 , ρ 2 , z , ω ) ] .
P ( ρ , z , ω ) = 1 4 Det W ( ρ , ρ , z , ω ) [ Tr W ( ρ , ρ , z , ω ) ] 2 ,

Metrics