Abstract

The Brillouin gain characteristics of a Yb-doped polarization-maintaining photonic crystal fiber possessing a segmented acoustic profile are investigated using a pump–probe technique. The concentrations of fluorine, aluminum, and germanium in two regions of the core were selected, such that the corresponding Brillouin shifts were sufficiently separated to allow for the introduction of a temperature profile along the fiber for further stimulated Brillouin scattering suppression. By using a cutback technique to measure loss, we estimated the Brillouin gain coefficient to be 1.2×1011m/W. Despite differences in the concentration levels of dopants between the two segments, there was no evidence of a development of an optical interface. When this fiber was utilized in a counterpumped amplifier configuration, close to 500W of near-diffraction-limited single-frequency output was obtained.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Dajani, C. Vergien, C. Robin, and C. Zeringue, Opt. Express 17, 24317 (2009).
    [CrossRef]
  2. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
    [CrossRef]
  3. M. Hildebrandt, S. Büesche, P. Weßels, M. Frede, and D. Kracht, Opt. Express 16, 15970 (2008).
    [CrossRef] [PubMed]
  4. D. Walton, S. Gray, J. Wang, M. J. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314(2007).
    [CrossRef]
  5. C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, J. Am. Ceram. Soc. 76, 712 (1993).
    [CrossRef]
  6. G. P. Agrawal, Nonlinear Optics, 3rd ed. (Academic, 2001).

2009 (1)

2008 (1)

2007 (2)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

D. Walton, S. Gray, J. Wang, M. J. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314(2007).
[CrossRef]

2001 (1)

G. P. Agrawal, Nonlinear Optics, 3rd ed. (Academic, 2001).

1993 (1)

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, J. Am. Ceram. Soc. 76, 712 (1993).
[CrossRef]

Abe, K.

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, J. Am. Ceram. Soc. 76, 712 (1993).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Optics, 3rd ed. (Academic, 2001).

Bonnell, L.

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, J. Am. Ceram. Soc. 76, 712 (1993).
[CrossRef]

Büesche, S.

Chen, X.

D. Walton, S. Gray, J. Wang, M. J. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314(2007).
[CrossRef]

Crowley, A.

D. Walton, S. Gray, J. Wang, M. J. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314(2007).
[CrossRef]

Dajani, I.

Frede, M.

Gray, S.

D. Walton, S. Gray, J. Wang, M. J. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314(2007).
[CrossRef]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Hildebrandt, M.

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Jen, C. K.

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, J. Am. Ceram. Soc. 76, 712 (1993).
[CrossRef]

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Kracht, D.

Kushibiki, J.

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, J. Am. Ceram. Soc. 76, 712 (1993).
[CrossRef]

Li, M. J.

D. Walton, S. Gray, J. Wang, M. J. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314(2007).
[CrossRef]

Liu, A.

D. Walton, S. Gray, J. Wang, M. J. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314(2007).
[CrossRef]

Neron, C.

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, J. Am. Ceram. Soc. 76, 712 (1993).
[CrossRef]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Robin, C.

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Shang, A.

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, J. Am. Ceram. Soc. 76, 712 (1993).
[CrossRef]

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Vergien, C.

Walton, D.

D. Walton, S. Gray, J. Wang, M. J. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314(2007).
[CrossRef]

Wang, J.

D. Walton, S. Gray, J. Wang, M. J. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314(2007).
[CrossRef]

Weßels, P.

Zenteno, L.

D. Walton, S. Gray, J. Wang, M. J. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314(2007).
[CrossRef]

Zeringue, C.

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

J. Am. Ceram. Soc. (1)

C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, J. Am. Ceram. Soc. 76, 712 (1993).
[CrossRef]

Opt. Express (2)

Proc. SPIE (1)

D. Walton, S. Gray, J. Wang, M. J. Li, X. Chen, A. Liu, L. Zenteno, and A. Crowley, Proc. SPIE 6453, 645314(2007).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Core design of the segmented acoustic fiber. The Brillouin shift in the center region comprised of one hexagon is different than that in the outer region comprised of six hexagons.

Fig. 2
Fig. 2

Experimental setup of pump–probe experiment. The pump power is amplified up to 8 W by using an intermediate amplifier.

Fig. 3
Fig. 3

BGS for acoustically segmented fiber confirming existence of two primary peaks. For comparison, the BGS for the reference fiber is shown.

Fig. 4
Fig. 4

Pump–probe conducted on a 10 m long reference fiber. In order to obtain an estimate of the Brillouin gain coefficient, results are fitted to numerical model.

Fig. 5
Fig. 5

Experimental setup to study SBS mitigation of acoustically tailored fiber in conjunction with the thermal gradient (left). Ideally the temperature profile would be a step function (right).

Fig. 6
Fig. 6

BGS for acoustically segmented fiber with step temperature profile applied leading to four primary peaks. The differences in relative gain among the peaks are attributed to nonideal heating conditions in “home-made” oven.

Fig. 7
Fig. 7

Beam profile and measured M 2 at 494 W output power for acoustically tailored PCF indicating near diffraction-limited operation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A eff = ( | φ ( x , y ) | 2 d x d y ) 2 | φ ( x , y ) | 4 d x d y ,
d P 1 d z = g B A eff P 1 P 2 α P 1 ,
d P 2 d z = g B A eff P 2 P 1 + α P 2 .

Metrics