Abstract

Blue–green to near-IR switching electroluminescence (EL) has been achieved in a metal-oxide-semiconductor light emitting device, where the dielectric has been replaced by a Si-rich silicon oxide/nitride bilayer structure. To form Si nanostructures, the layers were implanted with Si ions at high energy, resulting in a Si excess of 19%, and subsequently annealed at 1000°C. Transmission electron microscopy and EL studies allowed ascribing the blue–green emission to the Si nitride related defects and the near-IR band with the emission of the Si-nanoclusters embedded into the SiO2 layer. Charge transport analysis is reported and allows for identifying the origin of this two-wavelength switching effect.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription