Abstract

It is shown by simulations that terahertz (THz) radiation can be produced more efficiently by a mid-infrared laser pulse from a gas target. The THz amplitude is enhanced by 35 times as the laser wavelength increases from 1μm to 4μm; a 4μm laser at 1015Wcm2 produces 5MV/cm THz radiation. The THz amplitude changes oscillatingly with increasing laser intensity for a given laser wavelength. In addition, the laser intensity threshold for the THz emission is lower for a longer laser wavelength.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z.-M. Sheng, K. Mima, J. Zhang, and H. Sanuki, Phys. Rev. Lett. 94, 095003 (2005).
    [CrossRef] [PubMed]
  2. Z.-M. Sheng, H.-C. Wu, K. Li, and J. Zhang, Phys. Rev. E 69, 025401(R) (2004).
  3. D. J. Cook and R. M. Hochstrasser, Opt. Lett. 25, 1210(2000).
    [CrossRef]
  4. M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G. Roskos, Opt. Lett. 29, 1120 (2004).
    [CrossRef] [PubMed]
  5. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, Opt. Lett. 30, 2805 (2005).
    [CrossRef] [PubMed]
  6. X. Xie, J. Dai, and X.-C. Zhang, Phys. Rev. Lett. 96, 075005(2006).
    [CrossRef] [PubMed]
  7. J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
    [CrossRef] [PubMed]
  8. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Opt. Express 15, 4577 (2007).
    [CrossRef] [PubMed]
  9. H.-C. Wu, J. Meyer-ter-Vehn, and Z.-M. Sheng, New J. Phys. 10, 043001 (2008).
    [CrossRef]
  10. W.-M. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, and K. Mima, Opt. Express 16, 16999 (2008).
    [CrossRef] [PubMed]
  11. A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, Phys. Rev. Lett. 100, 255006 (2008).
    [CrossRef] [PubMed]
  12. W.-M. Wang, Z.-M. Sheng, X.-G. Dong, H.-W. Du, Y.-T. Li, and J. Zhang, J. Appl. Phys. 107, 023113 (2010).
    [CrossRef]
  13. P. Agostini and L. F. DiMauro, Contemp. Phys. 49, 179(2008).
    [CrossRef]
  14. M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).

2010 (1)

W.-M. Wang, Z.-M. Sheng, X.-G. Dong, H.-W. Du, Y.-T. Li, and J. Zhang, J. Appl. Phys. 107, 023113 (2010).
[CrossRef]

2009 (1)

J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef] [PubMed]

2008 (4)

H.-C. Wu, J. Meyer-ter-Vehn, and Z.-M. Sheng, New J. Phys. 10, 043001 (2008).
[CrossRef]

W.-M. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, and K. Mima, Opt. Express 16, 16999 (2008).
[CrossRef] [PubMed]

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

P. Agostini and L. F. DiMauro, Contemp. Phys. 49, 179(2008).
[CrossRef]

2007 (1)

2006 (1)

X. Xie, J. Dai, and X.-C. Zhang, Phys. Rev. Lett. 96, 075005(2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G. Roskos, Opt. Lett. 29, 1120 (2004).
[CrossRef] [PubMed]

Z.-M. Sheng, H.-C. Wu, K. Li, and J. Zhang, Phys. Rev. E 69, 025401(R) (2004).

2000 (1)

1986 (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).

Agostini, P.

P. Agostini and L. F. DiMauro, Contemp. Phys. 49, 179(2008).
[CrossRef]

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).

Bartel, T.

Chen, M.

Cook, D. J.

Dai, J.

J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X.-C. Zhang, Phys. Rev. Lett. 96, 075005(2006).
[CrossRef] [PubMed]

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).

DiMauro, L. F.

P. Agostini and L. F. DiMauro, Contemp. Phys. 49, 179(2008).
[CrossRef]

Dong, X.-G.

W.-M. Wang, Z.-M. Sheng, X.-G. Dong, H.-W. Du, Y.-T. Li, and J. Zhang, J. Appl. Phys. 107, 023113 (2010).
[CrossRef]

Du, H.-W.

W.-M. Wang, Z.-M. Sheng, X.-G. Dong, H.-W. Du, Y.-T. Li, and J. Zhang, J. Appl. Phys. 107, 023113 (2010).
[CrossRef]

Eden, S.

Elsaesser, T.

Gaal, P.

Glownia, J. H.

Hochstrasser, R. M.

Houard, A.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

Karpowicz, N.

J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef] [PubMed]

Kim, K. Y.

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).

Kress, M.

Li, C.

Li, K.

Z.-M. Sheng, H.-C. Wu, K. Li, and J. Zhang, Phys. Rev. E 69, 025401(R) (2004).

Li, Y.-T.

W.-M. Wang, Z.-M. Sheng, X.-G. Dong, H.-W. Du, Y.-T. Li, and J. Zhang, J. Appl. Phys. 107, 023113 (2010).
[CrossRef]

Liu, Y.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

Loffler, T.

Meyer-ter-Vehn, J.

H.-C. Wu, J. Meyer-ter-Vehn, and Z.-M. Sheng, New J. Phys. 10, 043001 (2008).
[CrossRef]

Mima, K.

Mysyrowicz, A.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

Prade, B.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

Reimann, K.

Rodriguez, G.

Roskos, H. G.

Sanuki, H.

Z.-M. Sheng, K. Mima, J. Zhang, and H. Sanuki, Phys. Rev. Lett. 94, 095003 (2005).
[CrossRef] [PubMed]

Sheng, Z.-M.

W.-M. Wang, Z.-M. Sheng, X.-G. Dong, H.-W. Du, Y.-T. Li, and J. Zhang, J. Appl. Phys. 107, 023113 (2010).
[CrossRef]

H.-C. Wu, J. Meyer-ter-Vehn, and Z.-M. Sheng, New J. Phys. 10, 043001 (2008).
[CrossRef]

W.-M. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, and K. Mima, Opt. Express 16, 16999 (2008).
[CrossRef] [PubMed]

Z.-M. Sheng, K. Mima, J. Zhang, and H. Sanuki, Phys. Rev. Lett. 94, 095003 (2005).
[CrossRef] [PubMed]

Z.-M. Sheng, H.-C. Wu, K. Li, and J. Zhang, Phys. Rev. E 69, 025401(R) (2004).

Taylor, A. J.

Thomson, M.

Tikhonchuk, V. T.

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

Wang, W.-M.

W.-M. Wang, Z.-M. Sheng, X.-G. Dong, H.-W. Du, Y.-T. Li, and J. Zhang, J. Appl. Phys. 107, 023113 (2010).
[CrossRef]

W.-M. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, and K. Mima, Opt. Express 16, 16999 (2008).
[CrossRef] [PubMed]

Woerner, M.

Wu, H.-C.

W.-M. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, and K. Mima, Opt. Express 16, 16999 (2008).
[CrossRef] [PubMed]

H.-C. Wu, J. Meyer-ter-Vehn, and Z.-M. Sheng, New J. Phys. 10, 043001 (2008).
[CrossRef]

Z.-M. Sheng, H.-C. Wu, K. Li, and J. Zhang, Phys. Rev. E 69, 025401(R) (2004).

Xie, X.

X. Xie, J. Dai, and X.-C. Zhang, Phys. Rev. Lett. 96, 075005(2006).
[CrossRef] [PubMed]

Zhang, J.

W.-M. Wang, Z.-M. Sheng, X.-G. Dong, H.-W. Du, Y.-T. Li, and J. Zhang, J. Appl. Phys. 107, 023113 (2010).
[CrossRef]

W.-M. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, and K. Mima, Opt. Express 16, 16999 (2008).
[CrossRef] [PubMed]

Z.-M. Sheng, K. Mima, J. Zhang, and H. Sanuki, Phys. Rev. Lett. 94, 095003 (2005).
[CrossRef] [PubMed]

Z.-M. Sheng, H.-C. Wu, K. Li, and J. Zhang, Phys. Rev. E 69, 025401(R) (2004).

Zhang, X.-C.

J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X.-C. Zhang, Phys. Rev. Lett. 96, 075005(2006).
[CrossRef] [PubMed]

Contemp. Phys. (1)

P. Agostini and L. F. DiMauro, Contemp. Phys. 49, 179(2008).
[CrossRef]

J. Appl. Phys. (1)

W.-M. Wang, Z.-M. Sheng, X.-G. Dong, H.-W. Du, Y.-T. Li, and J. Zhang, J. Appl. Phys. 107, 023113 (2010).
[CrossRef]

New J. Phys. (1)

H.-C. Wu, J. Meyer-ter-Vehn, and Z.-M. Sheng, New J. Phys. 10, 043001 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. E (1)

Z.-M. Sheng, H.-C. Wu, K. Li, and J. Zhang, Phys. Rev. E 69, 025401(R) (2004).

Phys. Rev. Lett. (4)

Z.-M. Sheng, K. Mima, J. Zhang, and H. Sanuki, Phys. Rev. Lett. 94, 095003 (2005).
[CrossRef] [PubMed]

A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, Phys. Rev. Lett. 100, 255006 (2008).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X.-C. Zhang, Phys. Rev. Lett. 96, 075005(2006).
[CrossRef] [PubMed]

J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a), (b), and (c): THz amplitude versus the intensity of the laser with different wavelengths, where the laser CE phase is zero. (d) THz amplitude versus the CE phase of the laser with different wavelengths, where the laser intensity is 10 17 W cm 2 .

Fig. 2
Fig. 2

Number distributions of newly born electrons versus c t x for different laser intensities I 0 , where t and x are the time and positions when electrons are born. Left column (a) results for 4 μm lasers; right column (b) for 1 μm lasers. The first row in each columns is the waveform of the laser electric field normalized by its amplitude. The laser CE phases are zero for both cases.

Fig. 3
Fig. 3

Left column, waveforms of the THz electric fields for different laser wavelengths; right column, corresponding spectra. The solid curves in every plot are the results from the original data of the simulations. The broken curves are the results after the components higher than 30 THz are filtered.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v z 0 = e m e c N j = 1 N A z ( ξ j ) ,

Metrics