Abstract

The acousto-optic control of light polarization due to diffraction by leaky acoustic waves in ZX-LiNbO3 has been demonstrated. The randomly polarized light of 633nm wavelength is converted by the anisotropic diffraction into two beams with mutually orthogonal polarizations, the relative intensities of which depend on the light incidence angle and acoustic frequency. Variation in acoustic frequency from 108 to 112MHz rotates the polarization of the output optical beam by 90°. The acousto-optic control is accomplished entirely by electronic means and can be applied for implementation of fast polarization converters.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Korpel, Acousto-Optics (Dekker, 1997).
  2. C. C. Tsai, ed., Guided-Wave Acousto-Optics:Interactions, Devices, and Applications (Springer, 1990).
    [CrossRef]
  3. L. Bei, G. I. Dennis, H. M. Miller, T. W. Spaine, J. W. Carnahan, Prog. Quantum Electron. 28, 67 (2004).
    [CrossRef]
  4. V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, J. Opt. A 9, 341 (2007).
    [CrossRef]
  5. C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, 1998).
  6. R. Rimeika, D. Ciplys, P. Kazdailis, and M. S. Shur, Appl. Phys. Lett. 90, 181935 (2007).
    [CrossRef]
  7. S. N. Antonov, Tech. Phys. 49, 1329 (2004).
    [CrossRef]
  8. D. Yudishira, D. Janner, S. Benchabane, and V. Primeri, Opt. Lett. 34, 3205 (2009).
    [CrossRef]
  9. K. B. Yushkov, S. Dupont, J. C. Kastelik, and V. B. Voloshinov, Opt. Lett. 35, 1416 (2010).
    [CrossRef] [PubMed]
  10. R. Rimeika and D. Čiplys, Ultragarsas (Ultrasound) 55 (2), 33 (2005).
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

2010 (1)

2009 (1)

2007 (2)

R. Rimeika, D. Ciplys, P. Kazdailis, and M. S. Shur, Appl. Phys. Lett. 90, 181935 (2007).
[CrossRef]

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, J. Opt. A 9, 341 (2007).
[CrossRef]

2005 (1)

R. Rimeika and D. Čiplys, Ultragarsas (Ultrasound) 55 (2), 33 (2005).

2004 (2)

S. N. Antonov, Tech. Phys. 49, 1329 (2004).
[CrossRef]

L. Bei, G. I. Dennis, H. M. Miller, T. W. Spaine, J. W. Carnahan, Prog. Quantum Electron. 28, 67 (2004).
[CrossRef]

1998 (1)

C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, 1998).

1997 (1)

A. Korpel, Acousto-Optics (Dekker, 1997).

1990 (1)

C. C. Tsai, ed., Guided-Wave Acousto-Optics:Interactions, Devices, and Applications (Springer, 1990).
[CrossRef]

1984 (1)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Antonov, S. N.

S. N. Antonov, Tech. Phys. 49, 1329 (2004).
[CrossRef]

Bei, L.

L. Bei, G. I. Dennis, H. M. Miller, T. W. Spaine, J. W. Carnahan, Prog. Quantum Electron. 28, 67 (2004).
[CrossRef]

Benchabane, S.

Campbell, C. K.

C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, 1998).

Carnahan, J. W.

L. Bei, G. I. Dennis, H. M. Miller, T. W. Spaine, J. W. Carnahan, Prog. Quantum Electron. 28, 67 (2004).
[CrossRef]

Ciplys, D.

R. Rimeika, D. Ciplys, P. Kazdailis, and M. S. Shur, Appl. Phys. Lett. 90, 181935 (2007).
[CrossRef]

D.?Ciplys,

R. Rimeika and D. Čiplys, Ultragarsas (Ultrasound) 55 (2), 33 (2005).

Dennis, G. I.

L. Bei, G. I. Dennis, H. M. Miller, T. W. Spaine, J. W. Carnahan, Prog. Quantum Electron. 28, 67 (2004).
[CrossRef]

Dupont, S.

Janner, D.

Kastelik, J. C.

Kazdailis, P.

R. Rimeika, D. Ciplys, P. Kazdailis, and M. S. Shur, Appl. Phys. Lett. 90, 181935 (2007).
[CrossRef]

Korpel, A.

A. Korpel, Acousto-Optics (Dekker, 1997).

Linde, B. B. J.

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, J. Opt. A 9, 341 (2007).
[CrossRef]

Miller, H. M.

L. Bei, G. I. Dennis, H. M. Miller, T. W. Spaine, J. W. Carnahan, Prog. Quantum Electron. 28, 67 (2004).
[CrossRef]

Primeri, V.

Rimeika, R.

R. Rimeika, D. Ciplys, P. Kazdailis, and M. S. Shur, Appl. Phys. Lett. 90, 181935 (2007).
[CrossRef]

R. Rimeika and D. Čiplys, Ultragarsas (Ultrasound) 55 (2), 33 (2005).

Shur, M. S.

R. Rimeika, D. Ciplys, P. Kazdailis, and M. S. Shur, Appl. Phys. Lett. 90, 181935 (2007).
[CrossRef]

Spaine, T. W.

L. Bei, G. I. Dennis, H. M. Miller, T. W. Spaine, J. W. Carnahan, Prog. Quantum Electron. 28, 67 (2004).
[CrossRef]

Tsai, C. C.

C. C. Tsai, ed., Guided-Wave Acousto-Optics:Interactions, Devices, and Applications (Springer, 1990).
[CrossRef]

Voloshinov, V. B.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yudishira, D.

Yushkov, K. B.

Appl. Phys. Lett. (1)

R. Rimeika, D. Ciplys, P. Kazdailis, and M. S. Shur, Appl. Phys. Lett. 90, 181935 (2007).
[CrossRef]

J. Opt. A (1)

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, J. Opt. A 9, 341 (2007).
[CrossRef]

Opt. Lett. (2)

Prog. Quantum Electron. (1)

L. Bei, G. I. Dennis, H. M. Miller, T. W. Spaine, J. W. Carnahan, Prog. Quantum Electron. 28, 67 (2004).
[CrossRef]

Tech. Phys. (1)

S. N. Antonov, Tech. Phys. 49, 1329 (2004).
[CrossRef]

Ultragarsas (1)

R. Rimeika and D. Čiplys, Ultragarsas (Ultrasound) 55 (2), 33 (2005).

Other (4)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, 1998).

A. Korpel, Acousto-Optics (Dekker, 1997).

C. C. Tsai, ed., Guided-Wave Acousto-Optics:Interactions, Devices, and Applications (Springer, 1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. I, randomly polarized incident beam; D o and D e , diffracted beams with ordinary and extraordinary polarizations, respectively.

Fig. 2
Fig. 2

Wave vector diagram for anisotropic acousto-optic diffraction in XZ plane of LiNbO 3 crystal.

Fig. 3
Fig. 3

Dependencies of diffracted light intensity on incidence angle of randomly polarized light. Polarization of diffracted beam: a, ordinary; b, extraordinary. Acoustic frequency was tuned in the indicated range to obtain maximum intensity of diffracted light at each incidence angle point.

Fig. 4
Fig. 4

Transmission of diffracted light through polarizer. Ordinary (a) and extraordinary (b) beams and their superposition (c). Dots, measured; curves, Malus’ law.

Fig. 5
Fig. 5

Dependencies of diffracted light intensity on acoustic frequency at constant incidence angle 58 ° of randomly polarized light. Ordinary (a) and extraordinary (b) beams and their superposition (c).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k i ± K a = k d ,
n i sin θ i ± f λ 0 V B cos α = n d sin θ d ,
n i cos θ i ± f λ 0 V B sin α = n d cos θ d ,

Metrics