Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Magnetic field modulation of photonic bandgap on FeCo/NiO half-shell array

Not Accessible

Your library or personal account may give you access

Abstract

FeCo/NiO half-shell arrays were fabricated based on the periodic monolayer polystyrene spheres. The two- dimensional magnetic periodic arrays form well-defined photonic crystals with pronounced stop bands. Quite interestingly, it is found that the stop bands can be tuned by an external magnetic field. The underlying mechanism is attributed to the controllable dielectric constant of the magnetic FeCo film under an applied magnetic field. The results shown here may open up an avenue for magnetically tunable photonic crystal stop bands, which may be useful for the creation of new magneto-optical devices.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Magnetically tunable surface plasmon resonance based on a composite consisting of noble metal nanoparticles and a ferromagnetic thin film

Chih-Ming Wei, Chih-Wei Chen, Chun-Hsiung Wang, Ju-Ying Chen, Yu-Chuan Chen, and Yang-Fang Chen
Opt. Lett. 36(4) 514-516 (2011)

Fiber magnetic-field sensor based on nanoparticle magnetic fluid and Fresnel reflection

Luan Xiong Chen, Xu Guang Huang, Jia Hu Zhu, Guang Can Li, and Sheng Lan
Opt. Lett. 36(15) 2761-2763 (2011)

Photonic bandgap plasmonic waveguides

Andrey Markov, Carsten Reinhardt, Bora Ung, Andrey B. Evlyukhin, Wei Cheng, Boris N. Chichkov, and Maksim Skorobogatiy
Opt. Lett. 36(13) 2468-2470 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.