Abstract

Results are presented on the efficient spectral manipulation of uniform and chirped Bragg reflectors inscribed in microstructured optical fibers utilizing short lengths of ferrofluids infiltrated in their capillaries. The infiltrated ferrofluidic defects can generate either parasitic reflection notch features in uniform Bragg reflectors of up to 80% visibility and 0.1nm spectral shift or tunability of the bandwidth and strength reflection up to 100% when introduced into chirped gratings. Spectra are presented for different spatial positions and optical characteristics of the ferrofluidic section.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. J. Russell, J. Lightwave Technol. 24, 4729 (2006).
    [CrossRef]
  2. D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
    [CrossRef] [PubMed]
  3. C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, J. Am. Chem. Soc. 131, 2925(2009).
    [CrossRef] [PubMed]
  4. C. Kerbage and B. J. Eggleton, Appl. Phys. Lett. 82, 1338(2003).
    [CrossRef]
  5. C. Markos, K. Vlachos, and G. Kakarantzas, Opt. Express 18, 24344 (2010).
    [CrossRef] [PubMed]
  6. C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
    [CrossRef]
  7. H. Jung, Y. G. Seo, W. Ha, D.-K. Kim, S. H. Park, and K. Oh, Opt. Lett. 34, 2745 (2009).
    [CrossRef] [PubMed]
  8. L. Rindorf and O. Bang, Opt. Lett. 33, 563 (2008).
    [CrossRef] [PubMed]
  9. A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, Opt. Express 18, 24654 (2010).
    [CrossRef] [PubMed]
  10. G. Chatzikyriakos, K. Iliopoulos, A. Bakandritsos, and S. Couris, Chem. Phys. Lett. 493, 314 (2010).
    [CrossRef]
  11. Y. Liu, L. Wei, and J. W. Y. Lit, Appl. Opt. 46, 6770 (2007).
    [CrossRef] [PubMed]
  12. G. Violakis and S. Pissadakis, in Transparent Optical Networks, 2007. 9th International Conference on, 2007 (ICTON, 2007), 217.
    [CrossRef]
  13. www.ferrotec.com.
  14. C. J. S. de Matos, P. Torres, L. C. G. Valente, W. Margulis, and R. Stubbe, J. Lightwave Technol. 19, 1206 (2001).
    [CrossRef]
  15. D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, Opt. Express 17, 1042 (2009).
    [CrossRef] [PubMed]

2010

2009

2008

2007

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Y. Liu, L. Wei, and J. W. Y. Lit, Appl. Opt. 46, 6770 (2007).
[CrossRef] [PubMed]

G. Violakis and S. Pissadakis, in Transparent Optical Networks, 2007. 9th International Conference on, 2007 (ICTON, 2007), 217.
[CrossRef]

2006

P. S. J. Russell, J. Lightwave Technol. 24, 4729 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

2003

C. Kerbage and B. J. Eggleton, Appl. Phys. Lett. 82, 1338(2003).
[CrossRef]

2001

Bakandritsos, A.

G. Chatzikyriakos, K. Iliopoulos, A. Bakandritsos, and S. Couris, Chem. Phys. Lett. 493, 314 (2010).
[CrossRef]

Bang, O.

Campopiano, S.

Candiani, A.

Canning, J.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, J. Am. Chem. Soc. 131, 2925(2009).
[CrossRef] [PubMed]

Chatzikyriakos, G.

G. Chatzikyriakos, K. Iliopoulos, A. Bakandritsos, and S. Couris, Chem. Phys. Lett. 493, 314 (2010).
[CrossRef]

Couris, S.

G. Chatzikyriakos, K. Iliopoulos, A. Bakandritsos, and S. Couris, Chem. Phys. Lett. 493, 314 (2010).
[CrossRef]

Crossley, M. J.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, J. Am. Chem. Soc. 131, 2925(2009).
[CrossRef] [PubMed]

Cusano, A.

de Matos, C. J. S.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

C. Kerbage and B. J. Eggleton, Appl. Phys. Lett. 82, 1338(2003).
[CrossRef]

Ha, W.

Iadicicco, A.

Iliopoulos, K.

G. Chatzikyriakos, K. Iliopoulos, A. Bakandritsos, and S. Couris, Chem. Phys. Lett. 493, 314 (2010).
[CrossRef]

Jung, H.

Kakarantzas, G.

Kerbage, C.

C. Kerbage and B. J. Eggleton, Appl. Phys. Lett. 82, 1338(2003).
[CrossRef]

Khoury, T.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, J. Am. Chem. Soc. 131, 2925(2009).
[CrossRef] [PubMed]

Kim, D.-K.

Konstantaki, M.

Lit, J. W. Y.

Liu, Y.

Margulis, W.

Markos, C.

Martelli, C.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, J. Am. Chem. Soc. 131, 2925(2009).
[CrossRef] [PubMed]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Oh, K.

Paladino, D.

Park, S. H.

Pissadakis, S.

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, Opt. Express 18, 24654 (2010).
[CrossRef] [PubMed]

G. Violakis and S. Pissadakis, in Transparent Optical Networks, 2007. 9th International Conference on, 2007 (ICTON, 2007), 217.
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Reimers, J. R.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, J. Am. Chem. Soc. 131, 2925(2009).
[CrossRef] [PubMed]

Rindorf, L.

Russell, P. S. J.

Seo, Y. G.

Sintic, M.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, J. Am. Chem. Soc. 131, 2925(2009).
[CrossRef] [PubMed]

Stocks, D.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, J. Am. Chem. Soc. 131, 2925(2009).
[CrossRef] [PubMed]

Stubbe, R.

Torres, P.

Valente, L. C. G.

Violakis, G.

G. Violakis and S. Pissadakis, in Transparent Optical Networks, 2007. 9th International Conference on, 2007 (ICTON, 2007), 217.
[CrossRef]

Vlachos, K.

Wei, L.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

C. Kerbage and B. J. Eggleton, Appl. Phys. Lett. 82, 1338(2003).
[CrossRef]

Chem. Phys. Lett.

G. Chatzikyriakos, K. Iliopoulos, A. Bakandritsos, and S. Couris, Chem. Phys. Lett. 493, 314 (2010).
[CrossRef]

J. Am. Chem. Soc.

C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, J. Am. Chem. Soc. 131, 2925(2009).
[CrossRef] [PubMed]

J. Lightwave Technol.

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

G. Violakis and S. Pissadakis, in Transparent Optical Networks, 2007. 9th International Conference on, 2007 (ICTON, 2007), 217.
[CrossRef]

www.ferrotec.com.

Supplementary Material (1)

» Media 1: AVI (197 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the ferrofluid-infiltrated MOF–Bragg grating. The distance Ax is defined from the edge of the Bragg grating to the middle of the ferrofluidic section.

Fig. 2
Fig. 2

Reflection spectra (a) of a 24-mm-long uniform grating infiltrated using a 2-mm-long ferrofluidic defect, versus relative position Ax of the ferrofluid within the grating length. (b) Wavelength position and normalized visibility of the above spectral notch versus relative position Ax . The visibility of the parasitic notch is defined as the percentage of the notch depth over the maximum strength of the individual reflection for each position Ax .

Fig. 3
Fig. 3

Reflection spectra of a 24-mm-long uniform grating infiltrated using 2-mm-long ferrofluidic defects of different dilution ratios.

Fig. 4
Fig. 4

Parasitic notch spectral location and its normalized visibility for three different dilutions of the ferrofluid and fixed position Ax = 2.5 mm within the MOF grating length.

Fig. 5
Fig. 5

Reflection spectra of a 40-mm-long chirped grating infiltrated using a 3-mm-long and 25% concentration ferrofluidic defect, versus its relative position Ax within the grating length. The ferrofluid moves from side B to side A (Media 1).

Tables (1)

Tables Icon

Table 1 Refractive Index and Optical Absorption Loss of EMG905 Ferrofluid for Different Volume Concentrations

Metrics