Abstract

We analyze the method of moving focus to determine the critical power for self-focusing by means of numerical simulation and a semianalytical model. It is shown that the original interpretation of a moving focus experiment does not hold in general and that inclusion of defocusing effects due to free electrons is necessary to relate the measured data to critical power.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Liu and S. L. Chin, Opt. Express 13, 5750 (2005).
    [CrossRef] [PubMed]
  2. J. Bernhardt, P. Simard, W. Liu, H. Xu, F. Theberge, A. Azarm, J. Daigle, and S. Chin, Opt. Commun. 281, 2248 (2008).
    [CrossRef]
  3. D. E. Laban, W. C. Wallace, R. D. Glover, R. T. Sang, and D. Kielpinski, Opt. Lett. 35, 1653 (2010).
    [CrossRef] [PubMed]
  4. M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604(2004).
    [CrossRef]
  5. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
    [CrossRef]
  6. J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B 71, 877 (2000).

2010 (1)

2008 (1)

J. Bernhardt, P. Simard, W. Liu, H. Xu, F. Theberge, A. Azarm, J. Daigle, and S. Chin, Opt. Commun. 281, 2248 (2008).
[CrossRef]

2007 (1)

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

2005 (1)

2004 (1)

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604(2004).
[CrossRef]

2000 (1)

J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B 71, 877 (2000).

Azarm, A.

J. Bernhardt, P. Simard, W. Liu, H. Xu, F. Theberge, A. Azarm, J. Daigle, and S. Chin, Opt. Commun. 281, 2248 (2008).
[CrossRef]

Bernhardt, J.

J. Bernhardt, P. Simard, W. Liu, H. Xu, F. Theberge, A. Azarm, J. Daigle, and S. Chin, Opt. Commun. 281, 2248 (2008).
[CrossRef]

Chin, S.

J. Bernhardt, P. Simard, W. Liu, H. Xu, F. Theberge, A. Azarm, J. Daigle, and S. Chin, Opt. Commun. 281, 2248 (2008).
[CrossRef]

Chin, S. L.

W. Liu and S. L. Chin, Opt. Express 13, 5750 (2005).
[CrossRef] [PubMed]

J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B 71, 877 (2000).

Couairon, A.

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

Daigle, J.

J. Bernhardt, P. Simard, W. Liu, H. Xu, F. Theberge, A. Azarm, J. Daigle, and S. Chin, Opt. Commun. 281, 2248 (2008).
[CrossRef]

Glover, R. D.

Kasparian, J.

J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B 71, 877 (2000).

Kielpinski, D.

Kolesik, M.

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604(2004).
[CrossRef]

Laban, D. E.

Liu, W.

J. Bernhardt, P. Simard, W. Liu, H. Xu, F. Theberge, A. Azarm, J. Daigle, and S. Chin, Opt. Commun. 281, 2248 (2008).
[CrossRef]

W. Liu and S. L. Chin, Opt. Express 13, 5750 (2005).
[CrossRef] [PubMed]

Moloney, J. V.

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604(2004).
[CrossRef]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

Sang, R. T.

Sauerbrey, R.

J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B 71, 877 (2000).

Simard, P.

J. Bernhardt, P. Simard, W. Liu, H. Xu, F. Theberge, A. Azarm, J. Daigle, and S. Chin, Opt. Commun. 281, 2248 (2008).
[CrossRef]

Theberge, F.

J. Bernhardt, P. Simard, W. Liu, H. Xu, F. Theberge, A. Azarm, J. Daigle, and S. Chin, Opt. Commun. 281, 2248 (2008).
[CrossRef]

Wallace, W. C.

Xu, H.

J. Bernhardt, P. Simard, W. Liu, H. Xu, F. Theberge, A. Azarm, J. Daigle, and S. Chin, Opt. Commun. 281, 2248 (2008).
[CrossRef]

Appl. Phys. B (1)

J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B 71, 877 (2000).

Opt. Commun. (1)

J. Bernhardt, P. Simard, W. Liu, H. Xu, F. Theberge, A. Azarm, J. Daigle, and S. Chin, Opt. Commun. 281, 2248 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

Phys. Rev. E (1)

M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604(2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Nonlinear focus shift in ultrashort duration pulse in the absence of self-focusing effects. The clean crossover between low-power and high-power regimes is solely due to defocusing effects of the free electrons. The different curves represent results for scaled ionization rates by factors indicated in the legend.

Fig. 2
Fig. 2

Focus position versus pulse peak power for a fixed focal length and varying beam size. In all cases, the crossover power P c o appears to be significantly lower than the critical power for self-focusing P c .

Fig. 3
Fig. 3

Effects of ionization rate variation: the lower the MPI rate, the higher the crossover power. Unlikely low ionization rates would be necessary for P c o to approach P c closely.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 w z 2 = 4 k 2 w 3 ( 1 P P c ) + 4 K σ K I 0 K τ ( K + 1 ) 2 k L pl w 0 ( w 0 w ) 2 K + 1 .

Metrics