Abstract

We report a design for a power-scalable all-fiber passively Q-switched laser that uses a large mode area Yb-doped fiber as a gain medium adiabatically tapered to an unpumped single-mode Yb-doped fiber, which serves as a saturable absorber. Through the use of a comprehensive numerical simulator, we demonstrate a passively Q-switched 1030nm pulsed laser with 14ns pulse duration and 0.5mJ pulse energy operating at 200kHz repetition rate. The proposed configuration has a potential for orders of magnitude of improvement in both the pulse energies and durations compared to the previously reported result. The key mechanism for this improvement relates to the ratio of the core areas between the pumped inverted large mode area gain fiber and the unpumped doped single-mode fiber.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Ait-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
    [CrossRef]
  2. A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, in Proceedings of Conference on Laser and Electro-Optics Europe (IEEE, 2005), p. 515.
    [CrossRef]
  3. T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, Opt. Lett. 34, 2891 (2009).
    [CrossRef] [PubMed]
  4. T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao, and S.-T. Lin, Opt. Express 18, 23523 (2010).
    [CrossRef] [PubMed]
  5. M. E. Fermann, Opt. Lett. 23, 52 (1998).
    [CrossRef]
  6. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, Opt. Lett. 32, 451 (2007).
    [CrossRef] [PubMed]
  7. Y. Wang and C.-Q. Xu, Appl. Opt. 45, 2058 (2006).
    [CrossRef] [PubMed]
  8. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
    [CrossRef]
  9. J. W. Thomas, Numerical Partial Differential Equations—Finite Difference Methods (Springer-Verlag, 1995).

2010 (1)

2009 (1)

2007 (1)

2006 (2)

Y. Wang and C.-Q. Xu, Appl. Opt. 45, 2058 (2006).
[CrossRef] [PubMed]

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Ait-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

2005 (1)

A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, in Proceedings of Conference on Laser and Electro-Optics Europe (IEEE, 2005), p. 515.
[CrossRef]

1998 (1)

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
[CrossRef]

1995 (1)

J. W. Thomas, Numerical Partial Differential Equations—Finite Difference Methods (Springer-Verlag, 1995).

Ait-Ameur, K.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Ait-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

Dianov, E. M.

Dvoyrin, V. V.

Fang, Y.-C.

Fermann, M. E.

Fotiadi, A. A.

A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, in Proceedings of Conference on Laser and Electro-Optics Europe (IEEE, 2005), p. 515.
[CrossRef]

Gilles, H.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Ait-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

Girard, S.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Ait-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
[CrossRef]

Huang, H.-M.

Kurkov, A. S.

A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, in Proceedings of Conference on Laser and Electro-Optics Europe (IEEE, 2005), p. 515.
[CrossRef]

Laroche, M.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Ait-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

Lee, Z.-C.

Lin, S.-T.

Mashinsky, V. M.

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
[CrossRef]

Passilly, N.

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Ait-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

Razdobreev, I. M.

A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, in Proceedings of Conference on Laser and Electro-Optics Europe (IEEE, 2005), p. 515.
[CrossRef]

Thomas, J. W.

J. W. Thomas, Numerical Partial Differential Equations—Finite Difference Methods (Springer-Verlag, 1995).

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
[CrossRef]

Tsai, T.-Y.

Tsao, H.-X.

Wang, Y.

Xu, C.-Q.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, IEEE J. Quantum Electron. 33, 1049 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Ait-Ameur, IEEE Photon. Technol. Lett. 18, 764 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (2)

J. W. Thomas, Numerical Partial Differential Equations—Finite Difference Methods (Springer-Verlag, 1995).

A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, in Proceedings of Conference on Laser and Electro-Optics Europe (IEEE, 2005), p. 515.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of proposed configuration. (Indicated fiber lengths are used in numerical simulations.)

Fig. 2
Fig. 2

Simulated output pulse of 200 kHz 270 μJ energy and 15 ns (FWHM) pulse duration. Left inset: output pulse train. Right inset: output from SA side.

Fig. 3
Fig. 3

Excited ions in percentage in the gain (top) and SA (bottom) fibers as a function of time and position.

Fig. 4
Fig. 4

Simulated pulse energy and duration depending on MFD of the gain fiber.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n 2 t = λ [ σ a n 1 σ e n 2 ] I λ h c d λ n 2 τ ,
n c P i ± t ± P i ± z = α i P i ± + 2 N 0 h c 2 σ e A co λ i 3 n 2 r d r d ϕ ,
I p ( t , L g ) = P p ( t ) / A cl , P i + ( t , 0 ) = R L P i ( t , 0 ) , P i + ( t , L sl ) = T P i + ( t , L g ) + R sl P i ( t , L sl ) , P i ( t , L g ) = T P i ( t , L sl ) , P i ( t , L sr ) = R sr P i + ( t , L sr ) ,

Metrics