Abstract

We propose a quarter-wave plate based on nanoslits and analyze it using a semianalytical theory and simulations. The device comprises two nanoslits arranged perpendicular to one another where the phases of the fields transmitted by the nanoslits differ by λ/4. In this way, the polarization state of the incident light can be changed from linear to circular or vice versa. The plasmonic nanoslit wave plate is thin and has a subwavelength lateral extent. We show that the predictions for the phase shift obtained from a semianalytical model are in very good agreement with simulations by the finite difference time domain method.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  2. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
    [CrossRef]
  3. F. Yang and J. R. Sambles, Phys. Rev. Lett. 89, 063901(2002).
    [CrossRef] [PubMed]
  4. L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2007).
  5. Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004).
    [CrossRef]
  6. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, Opt. Express 13, 6815 (2005).
    [CrossRef] [PubMed]
  7. Z. Marcet, J. W. Paster, D. W. Garr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, Opt. Lett. 33, 1410 (2008).
    [CrossRef] [PubMed]
  8. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, Nano Lett. 9, 235(2009).
    [CrossRef]
  9. A. Drezet, C. Genet, and T. W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008).
    [CrossRef] [PubMed]
  10. F. J. G. de Abajo, Opt. Express 10, 1475 (2002).
  11. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  12. B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991).
    [CrossRef]
  13. E. N. Economu, Phys. Rev. 182, 539 (1969).
    [CrossRef]
  14. F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
    [CrossRef] [PubMed]

2009 (1)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, Nano Lett. 9, 235(2009).
[CrossRef]

2008 (2)

2007 (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2007).

2005 (2)

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, Opt. Express 13, 6815 (2005).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

2004 (1)

Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

2002 (2)

F. Yang and J. R. Sambles, Phys. Rev. Lett. 89, 063901(2002).
[CrossRef] [PubMed]

F. J. G. de Abajo, Opt. Express 10, 1475 (2002).

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

1991 (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991).
[CrossRef]

1969 (1)

E. N. Economu, Phys. Rev. 182, 539 (1969).
[CrossRef]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, Nano Lett. 9, 235(2009).
[CrossRef]

Bower, J. E.

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, Nano Lett. 9, 235(2009).
[CrossRef]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, Nano Lett. 9, 235(2009).
[CrossRef]

Chan, H. B.

Cirelli, R. A.

de Abajo, F. J. G.

Dong, X.

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008).
[CrossRef] [PubMed]

Du, C.

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Economu, E. N.

E. N. Economu, Phys. Rev. 182, 539 (1969).
[CrossRef]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, Nano Lett. 9, 235(2009).
[CrossRef]

Gao, H.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Garr, D. W.

Genet, C.

A. Drezet, C. Genet, and T. W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2007).

Kim, H. K.

Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

Klemens, F.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Luo, X.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mansfield, W. M.

Marcet, Z.

Martin-Moreno, L.

F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Miner, J. F.

Moreno, Esteban

F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2007).

Pai, C. S.

Paster, J. W.

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Porto, J. A.

F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991).
[CrossRef]

Sambles, J. R.

F. Yang and J. R. Sambles, Phys. Rev. Lett. 89, 063901(2002).
[CrossRef] [PubMed]

Shi, H.

Sun, Z.

Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, Nano Lett. 9, 235(2009).
[CrossRef]

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991).
[CrossRef]

Wang, C.

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, Nano Lett. 9, 235(2009).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Yang, F.

F. Yang and J. R. Sambles, Phys. Rev. Lett. 89, 063901(2002).
[CrossRef] [PubMed]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, Nano Lett. 9, 235(2009).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004).
[CrossRef]

Nano Lett. (1)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, Nano Lett. 9, 235(2009).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

E. N. Economu, Phys. Rev. 182, 539 (1969).
[CrossRef]

Phys. Rev. B (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, Phys. Rev. B 44, 13556 (1991).
[CrossRef]

Phys. Rev. Lett. (4)

F. J. Garcia-Vidal, Esteban Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

F. Yang and J. R. Sambles, Phys. Rev. Lett. 89, 063901(2002).
[CrossRef] [PubMed]

Other (2)

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2007).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic layout of device comprising nanoslits with identical dimensions oriented perpendicular to one another. (b) Transmission spectra of a pair of unfilled and filled nanoslits. The glass-filled nanoslit pair exhibits a transmission resonance that is redshifted from that of the unfilled nanoslit pair. (c) Phase of E z transmitted through unfilled nanoslits at metal–air interface.

Fig. 2
Fig. 2

(a) Schematic layout of a device comprising two unfilled nanoslits and a filled nanoslit to produce the same overall transmission amplitude coefficients for the x and y polarizations, but differing in phase by π / 2 . (b) Transmission spectrum of an unfilled nanoslit and spectrum of a filled nanoslit. It can be seen that the amplitude transmitted through the unfilled nanoslit is half that of the filled nanoslit.

Fig. 3
Fig. 3

(a) Amplitudes of E x and E y components as a function of distance from the metal–air interface. E y lags behind E x with a phase difference of π / 2 . (Inset) Poynting vector distribution at the metal–air interface. (b) Phase E z transmitted through nanoslits, showing a phase difference of π / 2 between filled and unfilled slits. The dotted arrows indicate the phases at the top and bottom parts of the glass nanoslit. The dashed arrows indicate the phases on the left and right parts of the unfilled nanoslits. It can also be seen that the pair of arrows associated with each type of slit differ in phase by π rad , indicating resonant transmission.

Fig. 4
Fig. 4

Phase of fields transmitted by unfilled and glass-filled nanoslits versus slit width. The phases predicted for unfilled and glass-filled nanoslits of 83 and 40 nm , respectively, are indicated with horizontal lines. It can be seen that the predicted phase difference of π / 2 matches that found by the FDTD.

Fig. 5
Fig. 5

(a) Ratio of | E y | / | E x | plotted over a unit cell, showing a value of 1 ± 0.06 is achieved. (b) Phase difference between y- and x-polarized transmitted fields plotted over a unit cell. It can be seen that phase ( E y ) phase ( E x ) = π / 2 ± 0.03 rad . The incident wavelength is 802 nm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tanh ( w 2 β 2 ε 1 k 0 2 ) = ε 1 β 2 ε m k 0 2 ε m β 2 ε 1 k 0 2 ,
β eff = β 2 ( π l ) 2 .

Metrics