Abstract

We propose a quarter-wave plate based on nanoslits and analyze it using a semianalytical theory and simulations. The device comprises two nanoslits arranged perpendicular to one another where the phases of the fields transmitted by the nanoslits differ by λ/4. In this way, the polarization state of the incident light can be changed from linear to circular or vice versa. The plasmonic nanoslit wave plate is thin and has a subwavelength lateral extent. We show that the predictions for the phase shift obtained from a semianalytical model are in very good agreement with simulations by the finite difference time domain method.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface

Dacheng Wang, Yinghong Gu, Yandong Gong, Cheng-Wei Qiu, and Minghui Hong
Opt. Express 23(9) 11114-11122 (2015)

Plasmonic quarter-wave plate

A. Roberts and L. Lin
Opt. Lett. 37(11) 1820-1822 (2012)

Tunable wave plate based on active plasmonic metasurfaces

Tianyou Li, Lingling Huang, Juan Liu, Yongtian Wang, and Thomas Zentgraf
Opt. Express 25(4) 4216-4226 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription