Abstract

We have applied an iterative algorithm for hologram design with multiple output image planes arranged in close proximity to create continuous patterns within an imaging volume. These holograms have been designed for photolithography on three-dimensional surfaces. The influence of simulated image plane separation on the final image, and its suitability for lithography, is assessed. Results are presented and the most suitable case is demonstrated experimentally.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Toriz-Garcia, G. L. Williams, R. McWilliam, R. Curry, N. L. Seed, A. Purvis, and P. A. Ivey, J. Micromech. Microeng. 20, 015012 (2010).
    [CrossRef]
  2. A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, Opt. Lett. 30, 1300(2005).
    [CrossRef] [PubMed]
  3. R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).
  4. C. Bay, N. Huebner, J. Freeman, and T. Wilkinson, Opt. Lett. 35, 2230 (2010).
    [CrossRef] [PubMed]
  5. S. Bühling, F. Wyrowski, E. Kley, A. Nellissen, L. Wang, and M. Dirkzwager, J. Micromech. Microeng. 11, 603 (2001).
    [CrossRef]
  6. R. Dorche, A. Lohmann, and Sinzinger, Appl. Opt. 33, 869 (1994).
    [CrossRef]
  7. J. Xia and H. Yin, Opt. Eng. 48, 020502 (2009).
    [CrossRef]
  8. M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, Opt. Eng. 44, 125805 (2005).
    [CrossRef]
  9. J. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005).
  10. M. Sypek, J. Opt. Commun. 116, 43 (1995).
    [CrossRef]
  11. A. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001).
    [CrossRef]

2010

J. J. Toriz-Garcia, G. L. Williams, R. McWilliam, R. Curry, N. L. Seed, A. Purvis, and P. A. Ivey, J. Micromech. Microeng. 20, 015012 (2010).
[CrossRef]

C. Bay, N. Huebner, J. Freeman, and T. Wilkinson, Opt. Lett. 35, 2230 (2010).
[CrossRef] [PubMed]

2009

J. Xia and H. Yin, Opt. Eng. 48, 020502 (2009).
[CrossRef]

2005

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, Opt. Eng. 44, 125805 (2005).
[CrossRef]

J. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005).

A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, Opt. Lett. 30, 1300(2005).
[CrossRef] [PubMed]

2001

S. Bühling, F. Wyrowski, E. Kley, A. Nellissen, L. Wang, and M. Dirkzwager, J. Micromech. Microeng. 11, 603 (2001).
[CrossRef]

A. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001).
[CrossRef]

1995

M. Sypek, J. Opt. Commun. 116, 43 (1995).
[CrossRef]

1994

1972

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Bay, C.

Bühling, S.

S. Bühling, F. Wyrowski, E. Kley, A. Nellissen, L. Wang, and M. Dirkzwager, J. Micromech. Microeng. 11, 603 (2001).
[CrossRef]

Curry, R.

J. J. Toriz-Garcia, G. L. Williams, R. McWilliam, R. Curry, N. L. Seed, A. Purvis, and P. A. Ivey, J. Micromech. Microeng. 20, 015012 (2010).
[CrossRef]

Dirkzwager, M.

S. Bühling, F. Wyrowski, E. Kley, A. Nellissen, L. Wang, and M. Dirkzwager, J. Micromech. Microeng. 11, 603 (2001).
[CrossRef]

Dorche, R.

Freeman, J.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Goodman, J.

J. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005).

Huebner, N.

Ivey, P. A.

J. J. Toriz-Garcia, G. L. Williams, R. McWilliam, R. Curry, N. L. Seed, A. Purvis, and P. A. Ivey, J. Micromech. Microeng. 20, 015012 (2010).
[CrossRef]

A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, Opt. Lett. 30, 1300(2005).
[CrossRef] [PubMed]

Johnson, S.

Kley, E.

S. Bühling, F. Wyrowski, E. Kley, A. Nellissen, L. Wang, and M. Dirkzwager, J. Micromech. Microeng. 11, 603 (2001).
[CrossRef]

Kolodziejczyk, A.

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, Opt. Eng. 44, 125805 (2005).
[CrossRef]

Lohmann, A.

Maiden, A.

Makowski, M.

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, Opt. Eng. 44, 125805 (2005).
[CrossRef]

McWilliam, R.

J. J. Toriz-Garcia, G. L. Williams, R. McWilliam, R. Curry, N. L. Seed, A. Purvis, and P. A. Ivey, J. Micromech. Microeng. 20, 015012 (2010).
[CrossRef]

A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, Opt. Lett. 30, 1300(2005).
[CrossRef] [PubMed]

Mikula, G.

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, Opt. Eng. 44, 125805 (2005).
[CrossRef]

Nellissen, A.

S. Bühling, F. Wyrowski, E. Kley, A. Nellissen, L. Wang, and M. Dirkzwager, J. Micromech. Microeng. 11, 603 (2001).
[CrossRef]

Purvis, A.

J. J. Toriz-Garcia, G. L. Williams, R. McWilliam, R. Curry, N. L. Seed, A. Purvis, and P. A. Ivey, J. Micromech. Microeng. 20, 015012 (2010).
[CrossRef]

A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, Opt. Lett. 30, 1300(2005).
[CrossRef] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Seed, N. L.

J. J. Toriz-Garcia, G. L. Williams, R. McWilliam, R. Curry, N. L. Seed, A. Purvis, and P. A. Ivey, J. Micromech. Microeng. 20, 015012 (2010).
[CrossRef]

A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, Opt. Lett. 30, 1300(2005).
[CrossRef] [PubMed]

Sinzinger,

Sypek, M.

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, Opt. Eng. 44, 125805 (2005).
[CrossRef]

M. Sypek, J. Opt. Commun. 116, 43 (1995).
[CrossRef]

Toriz-Garcia, J. J.

J. J. Toriz-Garcia, G. L. Williams, R. McWilliam, R. Curry, N. L. Seed, A. Purvis, and P. A. Ivey, J. Micromech. Microeng. 20, 015012 (2010).
[CrossRef]

Wang, L.

S. Bühling, F. Wyrowski, E. Kley, A. Nellissen, L. Wang, and M. Dirkzwager, J. Micromech. Microeng. 11, 603 (2001).
[CrossRef]

Wilkinson, T.

Williams, G. L.

J. J. Toriz-Garcia, G. L. Williams, R. McWilliam, R. Curry, N. L. Seed, A. Purvis, and P. A. Ivey, J. Micromech. Microeng. 20, 015012 (2010).
[CrossRef]

A. Maiden, R. McWilliam, A. Purvis, S. Johnson, G. L. Williams, N. L. Seed, and P. A. Ivey, Opt. Lett. 30, 1300(2005).
[CrossRef] [PubMed]

Wong, A.

A. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001).
[CrossRef]

Wyrowski, F.

S. Bühling, F. Wyrowski, E. Kley, A. Nellissen, L. Wang, and M. Dirkzwager, J. Micromech. Microeng. 11, 603 (2001).
[CrossRef]

Xia, J.

J. Xia and H. Yin, Opt. Eng. 48, 020502 (2009).
[CrossRef]

Yin, H.

J. Xia and H. Yin, Opt. Eng. 48, 020502 (2009).
[CrossRef]

Appl. Opt.

J. Micromech. Microeng.

J. J. Toriz-Garcia, G. L. Williams, R. McWilliam, R. Curry, N. L. Seed, A. Purvis, and P. A. Ivey, J. Micromech. Microeng. 20, 015012 (2010).
[CrossRef]

S. Bühling, F. Wyrowski, E. Kley, A. Nellissen, L. Wang, and M. Dirkzwager, J. Micromech. Microeng. 11, 603 (2001).
[CrossRef]

J. Opt. Commun.

M. Sypek, J. Opt. Commun. 116, 43 (1995).
[CrossRef]

Opt. Eng.

J. Xia and H. Yin, Opt. Eng. 48, 020502 (2009).
[CrossRef]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, Opt. Eng. 44, 125805 (2005).
[CrossRef]

Opt. Lett.

Optik

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Other

J. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005).

A. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Multiplane algorithm illustrated. An image volume of depth z 2 is divided into N image planes separated by δ z ( δ z = z 2 / ( N 1 ) ). The image volume is offset from the diffraction plane hologram by z 3 .

Fig. 2
Fig. 2

Multiple plane constraints shown for a sparse case ( N = 3 ) Surface patterns are then applied on the nearest constraint plane.

Fig. 3
Fig. 3

Example average intensity profiles and center cross sections for simulated nonplanar surface. (a)  N = 4 ( δ z = 1365 μm ), (b)  N = 20 ( δ z = 215 μm ).

Fig. 4
Fig. 4

(a) Simulated contrast for variable plane separation ( δ z plotted on a log scale). (b) Hologram for N = 19 . Analog phase pattern shown. Resampled for implementation. Size is 1024 × 1024 pixels at 8 μm pitch.

Fig. 5
Fig. 5

Exposure setup. Laser (LR), spatial filter/beam expansion (SF), beam splitter (BS), modulator (SLM), substrate (S).

Fig. 6
Fig. 6

Photoresist pattern on (a) flat-top surface, (b)  45 ° sloped surface. Hologram used was N = 19 ( δ z = 228 μm ). Arrows indicate areas at the edge of image constraints for separate planes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U = { m = 1 M [ exp ( i π d 2 λ ( z 3 + z 2 / 2 ) ) ] } × rect ( x A , y B ) ,

Metrics