Abstract

An ultrahigh sensitivity polarimetric strain sensor is proposed based upon a four-layer D-shaped optical fiber and surface plasmon resonance (SPR) technology. In contrast to existing SPR-based sensors, which are based on changes in the refractive index of the overlayer, the sensor proposed in this study is based on the change in the refractive index of the fiber core in response to the application of an axial load. Specifically, the phase difference between the P and S waves after passing through the sensor under SPR conditions is measured using a common-path heterodyne interferometer and is used to determine the corresponding change in the refractive index of the core, from which the strain is then inversely derived. The experimental results show that the sensitivity of the proposed sensor is around 2.19×104  deg/ε, i.e., degree/strain. By contrast, that of a conventional (non-SPR) polarimetric fiber sensor is just 5.2×102  deg/ε. To the best of the authors’ knowledge, the sensor proposed in this study represents the first reported attempt to exploit the refractive index change of the core of an SPR-based fiber sensor for strain measurement purposes.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core

Nannan Luan, Ran Wang, Wenhua Lv, and Jianquan Yao
Opt. Express 23(7) 8576-8582 (2015)

Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor

Ahmmed A. Rifat, G. A. Mahdiraji, Yong Meng Sua, Rajib Ahmed, Y. G. Shee, and F. R. Mahamd Adikan
Opt. Express 24(3) 2485-2495 (2016)

D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry

Ming-Hung Chiu, Shinn-Fwu Wang, and Rong-Seng Chang
Opt. Lett. 30(3) 233-235 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription