Abstract

We demonstrate stimulated Raman microscopy with broadband pump and Stokes pulses, using spectral focusing to attain spectral resolution and to rapidly acquire spectra within a spectral window determined by the bandwidth of the pulses. As the Stokes pulse, we use the redshifted soliton generated in a photonic crystal fiber, which allows for simple shifting of the accessible spectral window.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, Appl. Phys. B 87, 389 (2007).
    [CrossRef]
  2. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
    [CrossRef] [PubMed]
  3. P. Nandakumar, A. Kovalev, and A. Volkmer, New J. Phys. 11, 033026 (2009).
    [CrossRef]
  4. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, Opt. Express 17, 3651 (2009).
    [CrossRef] [PubMed]
  5. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [CrossRef]
  6. A. Volkmer, J. Phys. D 38, R59 (2005).
    [CrossRef]
  7. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
    [CrossRef]
  8. I. Rocha-Mendoza, W. Langbein, and P. Borri, Appl. Phys. Lett. 93, 201103 (2008).
    [CrossRef]
  9. A. F. Pegoraro, A. Risdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, Opt. Express 17, 2984 (2009).
    [CrossRef] [PubMed]
  10. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, Opt. Lett. 31, 1328 (2006).
    [CrossRef] [PubMed]
  11. S. Mukamel, Principles of Nonlinear Spectroscopy (Oxford U. Press, 1995).
  12. J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef] [PubMed]
  13. F. M. Mitschkeand and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
    [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2007).

2009 (3)

2008 (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
[CrossRef] [PubMed]

I. Rocha-Mendoza, W. Langbein, and P. Borri, Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

2007 (2)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, Appl. Phys. B 87, 389 (2007).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2007).

2006 (1)

2005 (1)

A. Volkmer, J. Phys. D 38, R59 (2005).
[CrossRef]

2004 (1)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

1995 (1)

S. Mukamel, Principles of Nonlinear Spectroscopy (Oxford U. Press, 1995).

1986 (2)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2007).

Andresen, E. R.

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, Appl. Phys. B 87, 389 (2007).
[CrossRef]

Birkedal, V.

Borri, P.

I. Rocha-Mendoza, W. Langbein, and P. Borri, Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

Dake, F.

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
[CrossRef] [PubMed]

Fukui, K.

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, Appl. Phys. B 87, 389 (2007).
[CrossRef]

Gordon, J. P.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
[CrossRef] [PubMed]

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Itoh, K.

Jia, Y.

Kajiyama, S.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
[CrossRef] [PubMed]

Keiding, S. R.

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, New J. Phys. 11, 033026 (2009).
[CrossRef]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, Appl. Phys. B 87, 389 (2007).
[CrossRef]

Langbein, W.

I. Rocha-Mendoza, W. Langbein, and P. Borri, Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
[CrossRef] [PubMed]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
[CrossRef] [PubMed]

Mitschkeand, F. M.

Moffatt, D. J.

Mollenauer, L. F.

Mukamel, S.

S. Mukamel, Principles of Nonlinear Spectroscopy (Oxford U. Press, 1995).

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, New J. Phys. 11, 033026 (2009).
[CrossRef]

Ozeki, Y.

Pegoraro, A. F.

Pezacki, J. P.

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, Appl. Phys. B 87, 389 (2007).
[CrossRef]

Risdale, A.

Rocha-Mendoza, I.

I. Rocha-Mendoza, W. Langbein, and P. Borri, Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
[CrossRef] [PubMed]

Stolow, A.

Thøgersen, J.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
[CrossRef] [PubMed]

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, New J. Phys. 11, 033026 (2009).
[CrossRef]

A. Volkmer, J. Phys. D 38, R59 (2005).
[CrossRef]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, Appl. Phys. B 87, 389 (2007).
[CrossRef]

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Appl. Phys. B (1)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, Appl. Phys. B 87, 389 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

I. Rocha-Mendoza, W. Langbein, and P. Borri, Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

J. Phys. D (1)

A. Volkmer, J. Phys. D 38, R59 (2005).
[CrossRef]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, New J. Phys. 11, 033026 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857 (2008).
[CrossRef] [PubMed]

Other (2)

S. Mukamel, Principles of Nonlinear Spectroscopy (Oxford U. Press, 1995).

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Sketch of the experimental setup: dashed lines signify beams propagating in a lower plane and dotted lines are beams propagating in a higher plane. BS, beam splitter; PCF, photonic crystal fiber; AOM, acousto-optical modulator; LP, long-pass filter; SP, short-pass filter; PD, photodiode; APD, avalanche photodiode. Inset, pulse sequence and energy-level diagram for the SRS.

Fig. 2
Fig. 2

Images with the chirp optimized for spectral resolution. (a)–(c) SRS and (d)–(f) CARS images of polystyrene beads in index-matching oil for different Δ t . Pixel dwell time 20 ms , λ S = 1156 nm , P p = 14 mW , P S = 1 mW . The scale bar is 10 μm .

Fig. 3
Fig. 3

(a) SRG image of polystyrene beads in index-matching oil. (b) Raman spectrum of polystyrene. (c) CARS spectrum of a bead. (d) Solid curve, SRG spectrum of a bead and (d) dashed curve, corresponding simulation. (e) CARS spectrum of the oil. (f) SRG spectrum of the oil. Integration time per point 100 ms , λ S = 1159 nm , P p = 14 mW , P S = 1 mW , Φ 2 = 0.130 ps 2 , α = 3.85 10 6 fs 2 .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E P ( t ) = E P 0 ( t ) e i ω P t i α t 2 + c . c . ,
E S ( t Δ t ) = E S 0 ( t Δ t ) e i ω S ( t Δ t ) i α ( t Δ t ) 2 + c . c .
S SRG ( 3 ) ( t 3 , t 2 , t 1 ) ( i ) 3 δ ( t 3 ) e ( i Ω t 2 Γ t 2 ) δ ( t 1 ) .
P SRG ( 3 ) ( t ) = E p ( t t 3 t 2 t 1 ) E S ( t Δ t t 2 t 1 ) × E p * ( t t 1 ) S SRG ( 3 ) ( t 3 , t 2 , t 1 ) d t 1 d t 2 d t 3 + c . c . = E p 0 ( t ) e i ω S ( t Δ t ) i α ( t Δ t ) 2 × d t 2 e i Δ t 2 Γ t 2 E p 0 ( t t 2 ) E S 0 ( t Δ t t 2 ) + c . c .
SRG = d t | i P SRG ( 3 ) ( t ) + E S ( t ) | 2 d t | E S ( t ) | 2 ,
S CARS ( 3 ) ( t 3 , t 2 , t 1 ) ( i ) 3 δ ( t 3 ) e ( i Ω t 2 Γ t 2 ) δ ( t 1 ) .
P CARS ( 3 ) ( t ) = E p ( t t 3 t 2 t 1 ) E S * ( t Δ t t 2 t 1 ) × E p ( t t 1 ) S CARS ( 3 ) ( t 3 , t 2 , t 1 ) d t 1 d t 2 d t 3 + c . c . = E p 0 ( t ) e i ( 2 ω p ω S + 2 α Δ t ) t i α t 2 + i α Δ t 2 × d t 2 e i Δ t 2 Γ t 2 E p 0 ( t t 2 ) E S 0 ( t Δ t t 2 ) + c . c .
I CARS = d t | i P CARS ( 3 ) ( t ) | 2 ,

Metrics