Abstract

The characteristic of pump-to-Stokes relative intensity noise (RIN) transfer is comprehensively investigated for integrated As2Se3 waveguide Raman laser (As2Se3-WRL). It is found that, compared to its silicon counterpart, the RIN transfer is 5dB lower across all frequencies for As2Se3-WRL, mainly due to its relatively smaller Raman gain coefficient. A bidirectional pumping scheme is proposed and verified as an effective configuration to suppress RIN transfer because doubling of the inverse round trip time eliminates the RIN transfer peak at the odd multiples of the resonance frequency. The optimization of waveguide length on RIN transfer is also performed, in which two distinct regions are identified due to different dominant physical processes. In addition, we show that RIN transfer in As2Se3-WRL can be further reduced by using a high cavity for both pump and Stokes waves.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rong, A. Liu, R. Jones, D. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
    [CrossRef] [PubMed]
  2. A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, J. Lightwave Technol. 24, 1440 (2006).
    [CrossRef]
  3. F. Luan, M. Pelusi, M. Lamont, D. Choi, S. Madden, B. Davis, and B. Eggleton, Opt. Express 17, 3514 (2009).
    [CrossRef] [PubMed]
  4. Y. Huang, P. Shum, F. Luan, and M. Tang, Opt. Express 18, 24434 (2010).
    [CrossRef] [PubMed]
  5. K. Wu, J. Wong, P. Shum, S. Fu, C. Ouyang, H. Wang, E. Kelleher, A. Chernov, E. Obraztsova, and J. Chen, Opt. Express 18, 16663 (2010).
    [CrossRef] [PubMed]
  6. M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 260, 656 (2006).
    [CrossRef]
  7. C. Fludger, V. Handerek, and R. Mears, J. Lightwave Technol. 19, 1140 (2001).
    [CrossRef]
  8. X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
    [CrossRef]
  9. I. Rukhlenk, I. Udagedara, M. Premarante, and G. Agrawal, Opt. Lett. 35, 2343 (2010).
    [CrossRef]
  10. Y. Huang, P. Shum, and C. Lin, Opt. Commun. 283, 1389 (2010).
    [CrossRef]
  11. J. A. Moon and D. T. Schaafsma, Fiber Integr. Opt. 19, 201 (2000).
    [CrossRef]

2010

2009

2008

X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
[CrossRef]

2006

A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, J. Lightwave Technol. 24, 1440 (2006).
[CrossRef]

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 260, 656 (2006).
[CrossRef]

2005

H. Rong, A. Liu, R. Jones, D. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef] [PubMed]

2001

2000

J. A. Moon and D. T. Schaafsma, Fiber Integr. Opt. 19, 201 (2000).
[CrossRef]

Agrawal, G.

Boyraz, O.

X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
[CrossRef]

Brinkmeyer, E.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 260, 656 (2006).
[CrossRef]

Chen, J.

Chernov, A.

Choi, D.

Cierullies, S.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 260, 656 (2006).
[CrossRef]

Cohen, D.

A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, J. Lightwave Technol. 24, 1440 (2006).
[CrossRef]

H. Rong, A. Liu, R. Jones, D. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef] [PubMed]

Davis, B.

Dimitropoulos, D.

X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
[CrossRef]

Eggleton, B.

Fang, A.

H. Rong, A. Liu, R. Jones, D. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef] [PubMed]

Fludger, C.

Fu, S.

Hak, D.

A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, J. Lightwave Technol. 24, 1440 (2006).
[CrossRef]

H. Rong, A. Liu, R. Jones, D. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef] [PubMed]

Handerek, V.

Huang, Y.

Jalali, B.

X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
[CrossRef]

Jones, R.

A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, J. Lightwave Technol. 24, 1440 (2006).
[CrossRef]

H. Rong, A. Liu, R. Jones, D. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef] [PubMed]

Kelleher, E.

Krause, M.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 260, 656 (2006).
[CrossRef]

Lamont, M.

Lin, C.

Y. Huang, P. Shum, and C. Lin, Opt. Commun. 283, 1389 (2010).
[CrossRef]

Liu, A.

A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, J. Lightwave Technol. 24, 1440 (2006).
[CrossRef]

H. Rong, A. Liu, R. Jones, D. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef] [PubMed]

Luan, F.

Madden, S.

Mears, R.

Moon, J. A.

J. A. Moon and D. T. Schaafsma, Fiber Integr. Opt. 19, 201 (2000).
[CrossRef]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, D. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef] [PubMed]

Obraztsova, E.

Ouyang, C.

Paniccia, M.

A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, J. Lightwave Technol. 24, 1440 (2006).
[CrossRef]

H. Rong, A. Liu, R. Jones, D. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef] [PubMed]

Pelusi, M.

Premarante, M.

Renner, H.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 260, 656 (2006).
[CrossRef]

Rong, H.

A. Liu, H. Rong, R. Jones, D. Cohen, D. Hak, and M. Paniccia, J. Lightwave Technol. 24, 1440 (2006).
[CrossRef]

H. Rong, A. Liu, R. Jones, D. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef] [PubMed]

Rukhlenk, I.

Sang, X.

X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
[CrossRef]

Schaafsma, D. T.

J. A. Moon and D. T. Schaafsma, Fiber Integr. Opt. 19, 201 (2000).
[CrossRef]

Shum, P.

Tang, M.

Udagedara, I.

Wang, H.

Wong, J.

Wu, K.

Fiber Integr. Opt.

J. A. Moon and D. T. Schaafsma, Fiber Integr. Opt. 19, 201 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Sang, D. Dimitropoulos, B. Jalali, and O. Boyraz, IEEE Photon. Technol. Lett. 20, 2021 (2008).
[CrossRef]

J. Lightwave Technol.

Nature

H. Rong, A. Liu, R. Jones, D. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef] [PubMed]

Opt. Commun.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 260, 656 (2006).
[CrossRef]

Y. Huang, P. Shum, and C. Lin, Opt. Commun. 283, 1389 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

RIN transfer spectra for the Si-WRL and the one-way and the bidirectionally pumped As 2 Se 3 -WRLs.

Fig. 2
Fig. 2

Variation of the on resonance (dotted line) and off resonance (solid line) RIN transfer with respect to the waveguide length for the As 2 Se 3 -WRL.

Fig. 3
Fig. 3

Influence of pump ( R p , L ) and Stokes ( R s , L ) reflectivity on resonance RIN transfer for the As 2 Se 3 WRL.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d I i f , b d z + 1 v i d I i f , b d t = [ κ i ( I j f + I j b ) α p β ( I i f , b + 2 I i b , f + 2 I j f + 2 I j b ) ] I i f , b ,
κ p = g r λ s λ p , κ s = g r .
I p f , b ( z , t ) = I ¯ p f , b ( z ) [ 1 + n f , b ( z ) exp ( i Ω t ) ] ,
I s f , b ( z , t ) = I ¯ s f , b ( z ) [ 1 + m f , b ( z ) exp ( i Ω t ) ] .
± d n f , b d z = 1 v p ( i Ω ) n f , b g r λ s λ p ( I ¯ s f m f + I ¯ s b m b ) β ( I ¯ p f , b n f , b + 2 I ¯ p b , f n b , f + 2 I ¯ s f m f + 2 I ¯ s b m b ) ,
± d m f , b d z = 1 v s ( i Ω ) m f , b + g r ( I ¯ p f n f + I ¯ p b n b ) β ( I ¯ s f , b m f , b + 2 I ¯ s b , f m b , f + 2 I ¯ p f n f + 2 I ¯ p b n b ) .
n f ( 0 ) = I p 0 I ¯ p f ( 0 ) n 0 ( 1 R p , 0 ) + I ¯ p b ( 0 ) I ¯ p f ( 0 ) n b ( 0 ) R p , 0 , m f ( 0 ) = m b ( 0 ) ,
n b ( L ) = I p L I ¯ p b ( L ) n L ( 1 R p , L ) + I ¯ p f ( L ) I ¯ p b ( L ) n f ( L ) R p , L , m b ( L ) = m f ( L ) ,
H ( Ω ) = 10 log 10 ( | m ( L , Ω ) | 2 | n 0 | 2 ) .

Metrics