Abstract

We propose a new and power-efficient impulse radio ultawideband (IR-UWB) pulse design concept. The proposed concept is based on a linear sum of modified doublet pulses. The proposed concept is both simulated and experimentally demonstrated. The experimental demonstration employs a photonic scheme that generates the designed pulse using two main steps, mainly optical shaping and differential detection. The optical shaping is performed using a single electro-optic modulator biased in the nonlinear portion of its transfer function, and the differential detection is performed using a balanced photodetector. The generated IR-UWB pulse is fully Federal Communications Commission compliant, even in the highly power-restricted global positioning system band. The proposed optical scheme has potential to be integrated on a compact optical chip and thus suitable for reliable, low-cost, high-speed, short-range UWB wireless access, such as in-building networks.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
    [CrossRef]
  2. J. Yao, IEEE Microw. Mag. 10, 82 (2009).
    [CrossRef]
  3. X. Chen and S. Kiaei, in IEEE International Symposium Circuits and Systems 1, (IEEE, 2002), pp. 26.
  4. J. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 43, 3219. (2007)
  5. H. Chen, M. Chen, T. Wang, M. Li, and S. Xie, J. Lightwave Technol. 26, 2492 (2008).
    [CrossRef]
  6. Q. Wang and J. Yao, IEE Electron. Lett. 42, 1304(2006).
    [CrossRef]
  7. S. Pan and J. P. Yao, Opt. Lett. 34, 160 (2009).
    [CrossRef] [PubMed]
  8. E. Zhou, X. Xu, K. Lui, and K. K. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
    [CrossRef]
  9. M. Abtahi, J. Magne, M. Mirshafiei, L. Rusch, and S. LaRochelle, J. Lightwave Technol. 26, 628 (2008).
    [CrossRef]
  10. M. Bolea, T. Mora, B. Ortega, and J. Capmany, Opt. Express 17, 5023 (2009).
    [CrossRef] [PubMed]
  11. J. B. Jensen, R. Rodes, A. Caballero, X. Yu, T. B. Gibbon, and I. T. Monroy, Opt. Express 17, 16898 (2009).
    [CrossRef] [PubMed]
  12. S. Sales, J. Capmany, J. Marti, and D. Pastor, IEEE Electron Lett. 31, 1095 (1995).
    [CrossRef]

2010 (1)

E. Zhou, X. Xu, K. Lui, and K. K. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
[CrossRef]

2009 (4)

2008 (2)

2007 (1)

J. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 43, 3219. (2007)

2006 (1)

Q. Wang and J. Yao, IEE Electron. Lett. 42, 1304(2006).
[CrossRef]

2003 (1)

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

2002 (1)

X. Chen and S. Kiaei, in IEEE International Symposium Circuits and Systems 1, (IEEE, 2002), pp. 26.

1995 (1)

S. Sales, J. Capmany, J. Marti, and D. Pastor, IEEE Electron Lett. 31, 1095 (1995).
[CrossRef]

Abtahi, M.

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Bolea, M.

Caballero, A.

Capmany, J.

M. Bolea, T. Mora, B. Ortega, and J. Capmany, Opt. Express 17, 5023 (2009).
[CrossRef] [PubMed]

S. Sales, J. Capmany, J. Marti, and D. Pastor, IEEE Electron Lett. 31, 1095 (1995).
[CrossRef]

Chen, H.

Chen, M.

Chen, X.

X. Chen and S. Kiaei, in IEEE International Symposium Circuits and Systems 1, (IEEE, 2002), pp. 26.

Gibbon, T. B.

Jensen, J. B.

Kiaei, S.

X. Chen and S. Kiaei, in IEEE International Symposium Circuits and Systems 1, (IEEE, 2002), pp. 26.

LaRochelle, S.

Li, M.

Lui, K.

E. Zhou, X. Xu, K. Lui, and K. K. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
[CrossRef]

Magne, J.

Marti, J.

S. Sales, J. Capmany, J. Marti, and D. Pastor, IEEE Electron Lett. 31, 1095 (1995).
[CrossRef]

Mirshafiei, M.

Monroy, I. T.

Mora, T.

Ortega, B.

Pan, S.

Pastor, D.

S. Sales, J. Capmany, J. Marti, and D. Pastor, IEEE Electron Lett. 31, 1095 (1995).
[CrossRef]

Rodes, R.

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Rusch, L.

Sales, S.

S. Sales, J. Capmany, J. Marti, and D. Pastor, IEEE Electron Lett. 31, 1095 (1995).
[CrossRef]

Wang, Q.

J. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 43, 3219. (2007)

Q. Wang and J. Yao, IEE Electron. Lett. 42, 1304(2006).
[CrossRef]

Wang, T.

Wong, K. K.

E. Zhou, X. Xu, K. Lui, and K. K. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
[CrossRef]

Xie, S.

Xu, X.

E. Zhou, X. Xu, K. Lui, and K. K. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
[CrossRef]

Yao, J.

J. Yao, IEEE Microw. Mag. 10, 82 (2009).
[CrossRef]

J. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 43, 3219. (2007)

Q. Wang and J. Yao, IEE Electron. Lett. 42, 1304(2006).
[CrossRef]

Yao, J. P.

Yu, X.

Zeng, F.

J. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 43, 3219. (2007)

Zhou, E.

E. Zhou, X. Xu, K. Lui, and K. K. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
[CrossRef]

IEE Electron. Lett. (1)

Q. Wang and J. Yao, IEE Electron. Lett. 42, 1304(2006).
[CrossRef]

IEEE Electron Lett. (1)

S. Sales, J. Capmany, J. Marti, and D. Pastor, IEEE Electron Lett. 31, 1095 (1995).
[CrossRef]

IEEE Microw. Mag. (2)

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

J. Yao, IEEE Microw. Mag. 10, 82 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Zhou, X. Xu, K. Lui, and K. K. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (2)

Opt. Lett. (1)

Other (1)

X. Chen and S. Kiaei, in IEEE International Symposium Circuits and Systems 1, (IEEE, 2002), pp. 26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Temporal and PSD comparisons between doublet and modified pulses.

Fig. 2
Fig. 2

(a) Linear sum operation of modified doublet pulses and the resulting pulse. (b) PSD of the resulting pulse.

Fig. 3
Fig. 3

Principle of shaping of a Gaussian pulse using the transfer function of EOM.

Fig. 4
Fig. 4

Experimental setup of the UWB generator.

Fig. 5
Fig. 5

Temporal response and PSD of experimentally generated IR-UWB.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

x ( t ) = [ 1 4 π k ( t σ ) 2 ] exp ( 2 π ( t σ ) 2 ) ,
X ( ω ) = [ 4 π ( 1 k ) σ + k ω 2 σ 3 8 π π ] exp ( ( ω σ ) 2 8 π ) .
y ( t ) = a 11 x ( t ) + a 12 x ( t τ ) ,
η = f 1 = 3.1 GHz f h = 10.6 GHz Y ( f ) d f f 1 = 3.1 GHz f h = 10.6 GHz P FCC ( f ) d f × 100 % ,
P out = 1 2 P in { 1 + cos [ π V π V bias + π V π V ( t ) ] } ,

Metrics