Abstract

We describe the fabrication and characterization of a nanostructured diffractive element with near-zero reflection losses. In this element, subwavelength nanostructures emulating adiabatic index matching are integrated on the surface of a diffractive microstructure to suppress reflected diffraction orders. The fabricated silicon grating exhibits reflected efficiencies that are suppressed by 2 orders of magnitude over broad wavelength bands and wide incident angles. Theoretical models of the fabricated structure based on rigorous coupled-wave analysis and effective medium theory are in agreement with the experimental data. The proposed principles can be applied to improve the performance of any diffractive structures, potentially leading to more efficient Fresnel lenses, holographic elements, and integrated optical systems.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lalanne and G. M. Morris, Nanotechnology 8, 53 (1997).
    [CrossRef]
  2. Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 1422(1999).
    [CrossRef]
  3. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176(2007).
  4. M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, Opt. Lett. 33, 2527 (2008).
    [CrossRef] [PubMed]
  5. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
    [CrossRef]
  6. G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu, Nanotechnology 19, 095605 (2008).
    [CrossRef] [PubMed]
  7. Y. Zhao, J. Wang, and G. Mao, Opt. Lett. 30, 1885(2005).
    [CrossRef] [PubMed]
  8. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, Opt. Express 15, 14793 (2007).
    [CrossRef] [PubMed]
  9. C.-H. Chang, L. Waller, and G. Barbastathis, Opt. Lett. 35, 907 (2010).
    [CrossRef] [PubMed]
  10. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, Prog. Photovoltaics 14, 13 (2006).
    [CrossRef]
  11. C. Eisele, C. E. Nebel, and M. Stutzmann, J. Appl. Phys. 89, 7722 (2001).
    [CrossRef]
  12. D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett 29, 2749 (2004).
    [CrossRef] [PubMed]
  13. J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
    [CrossRef]
  14. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]
  15. F. T. Chen and H. G. Craighead, Opt. Lett. 20, 121(1995).
    [CrossRef] [PubMed]

2010 (1)

2008 (2)

2007 (3)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176(2007).

H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, Opt. Express 15, 14793 (2007).
[CrossRef] [PubMed]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

2006 (1)

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, Prog. Photovoltaics 14, 13 (2006).
[CrossRef]

2005 (1)

2004 (1)

D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett 29, 2749 (2004).
[CrossRef] [PubMed]

2001 (1)

C. Eisele, C. E. Nebel, and M. Stutzmann, J. Appl. Phys. 89, 7722 (2001).
[CrossRef]

1999 (1)

1997 (1)

P. Lalanne and G. M. Morris, Nanotechnology 8, 53 (1997).
[CrossRef]

1995 (3)

Baets, R.

D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett 29, 2749 (2004).
[CrossRef] [PubMed]

Barbastathis, G.

Bienstman, P.

D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett 29, 2749 (2004).
[CrossRef] [PubMed]

Chang, C.-H.

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Chen, F. T.

Chen, H. L.

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176(2007).

Chuang, S. Y.

Craighead, H. G.

Eisele, C.

C. Eisele, C. E. Nebel, and M. Stutzmann, J. Appl. Phys. 89, 7722 (2001).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Haase, C.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, Prog. Photovoltaics 14, 13 (2006).
[CrossRef]

Hane, K.

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Hulteen, J. C.

J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
[CrossRef]

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Kanamori, Y.

Kim, J. K.

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, Opt. Lett. 33, 2527 (2008).
[CrossRef] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176(2007).

Kim, Y. S.

Kuo, M.-L.

Lalanne, P.

P. Lalanne and G. M. Morris, Nanotechnology 8, 53 (1997).
[CrossRef]

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Lin, C. H.

Lin, F.

G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu, Nanotechnology 19, 095605 (2008).
[CrossRef] [PubMed]

Lin, S.-Y.

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, Opt. Lett. 33, 2527 (2008).
[CrossRef] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176(2007).

Lin, Y. H.

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176(2007).

Liu, Z.

G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu, Nanotechnology 19, 095605 (2008).
[CrossRef] [PubMed]

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Mao, G.

Moharam, M. G.

Mont, F. W.

Morris, G. M.

P. Lalanne and G. M. Morris, Nanotechnology 8, 53 (1997).
[CrossRef]

Mu, S.

G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu, Nanotechnology 19, 095605 (2008).
[CrossRef] [PubMed]

Müller, J.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, Prog. Photovoltaics 14, 13 (2006).
[CrossRef]

Nebel, C. E.

C. Eisele, C. E. Nebel, and M. Stutzmann, J. Appl. Phys. 89, 7722 (2001).
[CrossRef]

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Pommet, D. A.

Poxson, D. J.

Sasaki, M.

Schubert, E. F.

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, Opt. Lett. 33, 2527 (2008).
[CrossRef] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176(2007).

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176(2007).

Senoussaoui, N.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, Prog. Photovoltaics 14, 13 (2006).
[CrossRef]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176(2007).

Stiebig, H.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, Prog. Photovoltaics 14, 13 (2006).
[CrossRef]

Stutzmann, M.

C. Eisele, C. E. Nebel, and M. Stutzmann, J. Appl. Phys. 89, 7722 (2001).
[CrossRef]

Taillaert, D.

D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett 29, 2749 (2004).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
[CrossRef]

Waller, L.

Wang, J.

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176(2007).

Xie, G.

G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu, Nanotechnology 19, 095605 (2008).
[CrossRef] [PubMed]

Zahren, C.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, Prog. Photovoltaics 14, 13 (2006).
[CrossRef]

Zhang, G.

G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu, Nanotechnology 19, 095605 (2008).
[CrossRef] [PubMed]

Zhang, J.

G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu, Nanotechnology 19, 095605 (2008).
[CrossRef] [PubMed]

Zhao, Y.

J. Appl. Phys. (1)

C. Eisele, C. E. Nebel, and M. Stutzmann, J. Appl. Phys. 89, 7722 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
[CrossRef]

Nanotechnology (2)

P. Lalanne and G. M. Morris, Nanotechnology 8, 53 (1997).
[CrossRef]

G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu, Nanotechnology 19, 095605 (2008).
[CrossRef] [PubMed]

Nat. Photon. (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176(2007).

Nature Nanotechnology (1)

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nature Nanotechnology 2, 770 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett (1)

D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett 29, 2749 (2004).
[CrossRef] [PubMed]

Opt. Lett. (5)

Prog. Photovoltaics (1)

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, Prog. Photovoltaics 14, 13 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the proposed nanostructured GRIN grating, where the reflected orders are suppressed and all energy is transmitted. (b)–(e) Fabrication process of the grating in silicon. (b) Nanospheres are spincoated on a HSQ-coated silicon substrate, and (c) the subwavelength features are etched into the substrate. (d) The substrate is then planarized, and the diffractive microstructure patterned using contact lithography and (e) transferred using RIE.

Fig. 2
Fig. 2

Micrographs of fabricated nanostructured GRIN grating. (a) Top view of the 5 μm -period grating with nanoengineered surfaces. (b) Cross-section view of the structure, the grating depth is around 570 nm . The cones on the grating (c) ridge and (d) groove have base diameter of 150 nm and heights of 650 and 570 nm , respectively.

Fig. 3
Fig. 3

Measured reflected efficiencies of the zeroth and ± 1 st diffracted orders for the AR and silicon grating for incident wavelengths of 633, 532, and 351 nm . The solid and dashed lines are simulated efficiencies using RCWA and EMT.

Fig. 4
Fig. 4

Images of the fabricated AR grating next to a bare silicon grating under (a) white fiber source at normal incidence. Both zeroth and first orders are suppressed in the AR grating sample. (b) The fabricated structure also demonstrates suppressed diffraction in normal room lighting.

Tables (1)

Tables Icon

Table 1 Parameters of the Numerical Model

Metrics