Abstract

We demonstrate that four-wave mixing (FWM) signals from individual Si nanoparticles can be generated by the surface fields of traveling surface plasmon polariton modes. We have chosen a counterpropagating excitation scheme in which the nanoparticle is exposed only to surface excitation fields and not to direct laser illumination. We show that background-free, surface-mediated FWM of nanoparticles can be acquired, and that the resulting nonlinear radiation is coherent.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, C. Y. Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, Adv. Opt. Photon. 3, 1 (2011).
    [CrossRef]
  2. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Phys. Rev. Lett. 92, 220801 (2004).
    [CrossRef] [PubMed]
  3. T. W. Koo, S. Chan, and A. A. Berlin, Opt. Lett. 30, 1024(2005).
    [CrossRef] [PubMed]
  4. H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, Nano Lett. 8, 2373 (2008).
    [CrossRef] [PubMed]
  5. S. Palomba and L. Novotny, Phys. Rev. Lett. 101, 056802 (2008).
    [CrossRef] [PubMed]
  6. J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, Phys. Rev. Lett. 104, 046803 (2010).
    [CrossRef] [PubMed]
  7. J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, Phys. Rev. Lett. 103, 266802 (2009).
    [CrossRef]
  8. H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, and L. Novotny, Nano Lett. 10, 5076 (2010).
    [CrossRef]
  9. C. K. Shen, A. R. B. de Castro, and Y. R. Shen, Phys. Rev. Lett. 43, 946 (1979).
    [CrossRef]
  10. H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. B 15, 1381 (1998).
    [CrossRef]
  11. R. Boyd, Nonlinear Optics (Academic, 2008).

2011 (1)

2010 (2)

J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, and L. Novotny, Nano Lett. 10, 5076 (2010).
[CrossRef]

2009 (1)

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

2008 (3)

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, Nano Lett. 8, 2373 (2008).
[CrossRef] [PubMed]

S. Palomba and L. Novotny, Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef] [PubMed]

R. Boyd, Nonlinear Optics (Academic, 2008).

2005 (1)

2004 (1)

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

1998 (1)

1979 (1)

C. K. Shen, A. R. B. de Castro, and Y. R. Shen, Phys. Rev. Lett. 43, 946 (1979).
[CrossRef]

Berlin, A. A.

Boyd, R.

R. Boyd, Nonlinear Optics (Academic, 2008).

Chan, S.

de Castro, A. R. B.

C. K. Shen, A. R. B. de Castro, and Y. R. Shen, Phys. Rev. Lett. 43, 946 (1979).
[CrossRef]

Harutyunyan, H.

H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, and L. Novotny, Nano Lett. 10, 5076 (2010).
[CrossRef]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Hulst, N. v.

J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Kano, H.

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. B 15, 1381 (1998).
[CrossRef]

Kim, H.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, Nano Lett. 8, 2373 (2008).
[CrossRef] [PubMed]

Koo, T. W.

Lin, C. Y.

Mizuguchi, S.

Nikolaenko, A.

Novotny, L.

H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, and L. Novotny, Nano Lett. 10, 5076 (2010).
[CrossRef]

J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

S. Palomba and L. Novotny, Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef] [PubMed]

Palomba, S.

H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, and L. Novotny, Nano Lett. 10, 5076 (2010).
[CrossRef]

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

S. Palomba and L. Novotny, Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef] [PubMed]

Penner, R. M.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, Nano Lett. 8, 2373 (2008).
[CrossRef] [PubMed]

Potma, E. O.

Y. Wang, C. Y. Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, Adv. Opt. Photon. 3, 1 (2011).
[CrossRef]

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, Nano Lett. 8, 2373 (2008).
[CrossRef] [PubMed]

Quidant, R.

J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, and L. Novotny, Nano Lett. 10, 5076 (2010).
[CrossRef]

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

Raghunathan, V.

Renger, J.

J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, and L. Novotny, Nano Lett. 10, 5076 (2010).
[CrossRef]

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

Shen, C. K.

C. K. Shen, A. R. B. de Castro, and Y. R. Shen, Phys. Rev. Lett. 43, 946 (1979).
[CrossRef]

Shen, Y. R.

C. K. Shen, A. R. B. de Castro, and Y. R. Shen, Phys. Rev. Lett. 43, 946 (1979).
[CrossRef]

Taggart, D. K.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, Nano Lett. 8, 2373 (2008).
[CrossRef] [PubMed]

Wang, Y.

Xiang, C.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, Nano Lett. 8, 2373 (2008).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, and L. Novotny, Nano Lett. 10, 5076 (2010).
[CrossRef]

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, Nano Lett. 8, 2373 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (5)

S. Palomba and L. Novotny, Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. v. Hulst, and L. Novotny, Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. v. Hulst, S. Palomba, and L. Novotny, Phys. Rev. Lett. 103, 266802 (2009).
[CrossRef]

C. K. Shen, A. R. B. de Castro, and Y. R. Shen, Phys. Rev. Lett. 43, 946 (1979).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Other (1)

R. Boyd, Nonlinear Optics (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experiment. (a) Beam configuration for objective-based focusing of incident fields E 1 and E 2 . (b) Excitation configuration. Two counterpropagating surface plasmon polaritons are launched into an Au film. The Si nanotarget is placed onto the gold surface in between the launching spots.

Fig. 2
Fig. 2

(a) CCD image of the focused laser spots on the gold film. Dotted circle indicates the location of the nanoparticle. (b) CCD image of the FWM radiation from the nanoparticle. (c) SEM image of a 200 nm Si nanoparticle.

Fig. 3
Fig. 3

(a) Power dependence of the FWM radiation from the Si nanoparticle. Solid lines are linear fits. (b) FWM signal as a function of the time delay between E 1 and E 2 . The solid curve is the calculated cross-correlation based on the pulse widths of the individual beams (assuming Gaussian pulses). (c) Dependence of the FWM signal as a function of the polarization orientation E 1 (squares), E 2 (circles), or both (triangles). Solid curves are fits with the functions indicated.

Fig. 4
Fig. 4

Interference of two surface plasmon modes emanating from two spatially offset nanoparticles.

Metrics