Abstract

We report a unique spectral narrowing and manipulation technique in an optical parametric oscillator (OPO) realized by an integrated periodically poled lithium niobate comprising an optical parametric gain medium sandwiched by two electro-optic polarization-mode converters (EO PMCs). We achieved a manipulation of the gain spectrum of the OPO via EO and/or temperature control of the EO PMCs, in which we obtained single to multiple signal spectral peaks from the OPO with a spectral width reduced by up to 10 times and peak intensity increased by up to 6 times in comparison with the original signal. Fast EO tuning of the narrowed signal spectral peak has also been demonstrated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
    [CrossRef]
  2. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Opt. Lett. 30, 2281 (2005).
    [CrossRef] [PubMed]
  3. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 20, 52 (1995).
    [CrossRef] [PubMed]
  4. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
    [CrossRef]
  5. C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, Opt. Express 15, 2548 (2007).
    [CrossRef] [PubMed]
  6. W. K. Chang, Y. H. Chen, and J. W. Chang, Opt. Lett. 35, 2687 (2010).
    [CrossRef] [PubMed]
  7. Y. H. Chen and Y. C. Huang, Opt. Lett. 28, 1460 (2003).
    [CrossRef] [PubMed]

2010 (1)

2007 (1)

2005 (1)

2003 (1)

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

1995 (1)

1979 (1)

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
[CrossRef]

Bosenberg, W. R.

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
[CrossRef]

Byer, R. L.

Chang, J. W.

Chang, W. K.

Chen, Y. H.

Eckardt, R. C.

Fejer, M. M.

Huang, C. Y.

Huang, Y. C.

Jacobsson, B.

Laurell, F.

Lin, C. H.

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Miller, G. D.

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Myers, L. E.

Pasiskevicius, V.

Tiihonen, M.

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic arrangement of the 1064 nm pumped OPO system at the 1532 nm band based on a monolithic LiNbO 3 integrating a 3 cm long, 29.8 μm period PPLN OPGM and two 1.25 cm long, 21 μm period PPLN EO PMCs.

Fig. 2
Fig. 2

Calculated e-polarized wave spectra after the first round trip in the device shown in Fig. 1 at E y = 93 V / mm (dotted line) and 1168 V / mm (solid black line), provided a flat-spectrum signal wave is generated from the OPGM. Both PMCs are operated with identical driving fields. The solid gray line represents the actual single-pass signal spectrum with the PPLN OPGM pumped by a 61 MW / cm 2 1064 nm wave.

Fig. 3
Fig. 3

Measured (solid black line; blue/red online) and calculated (dashed gray line) output signal spectra from the OPO system at T OPGM = 45 ° C , T PMC 1 = T PMC 2 = 44.3 ° C , and at ( E PMC 1 , E PMC 2 )=(a) (1290, 980) V / mm ; (b) (1060, 700) V / mm (i) and (900, 800) V / mm (ii); and (c) (0, 600) V / mm . The solid gray line (green online) represents the signal spectrum from the system in passive operation.

Fig. 4
Fig. 4

Measured (solid black line; blue online) and calculated (dashed gray line) output signal spectra from the OPO system at T OPGM = 42 ° C , T PMC 1 = T PMC 2 = 42.8 ° C , and at ( E PMC 1 , E PMC 2 )=(a) (940, 1100) V / mm and (b) (1040, 1050) V / mm . The solid gray line (green online) represents the signal spectrum from the system in passive operation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ EOPMC = 2 λ c π [ sinc 1 ( 1 / 2 K L c ) ] 2 ( K L c ) 2 t c L c | n o n e λ c ( n o n e ) λ c | 1 ,

Metrics