Abstract

We demonstrated an InP-based optical multimode interferometer (MMI) combined with metamaterials consisting of minute split-ring resonators (SRRs) arrayed on the MMI. The MMI could operate at an optical fiber communication wavelength of 1.5μm. Magnetic resonance occurred between the SRR metamaterial and light at 1.5μm, and the relative permeability of the metamaterial increased to 2.4 around this wavelength. This result shows that it is possible to use new materials with nonunity permeability to construct semiconductor-based photonic devices.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smit, R. Baets, and M. Wale, in IEEE Proceedings of the European Conference on Optical Communication (IEEE, 2009), paper 1.7.3.
  2. S. C. Nicholes, M. L. Masanović, B. Jevremović, E. Lively, L. A. Coldren, and D. J. Blumenthal, J. Lightwave Technol. 28, 641 (2010).
    [CrossRef]
  3. H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
    [CrossRef] [PubMed]
  4. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, Opt. Express 15, 3333 (2007).
    [CrossRef] [PubMed]
  5. M. S. Rill, C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, Opt. Lett. 34, 19 (2009).
    [CrossRef]
  6. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. E 67, 057602 (2003).
    [CrossRef]
  7. A. C. Peacock and N. G. R. Broaderick, Opt. Express 11, 2502 (2003).
    [CrossRef] [PubMed]
  8. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007).
    [CrossRef] [PubMed]
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [CrossRef]
  10. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
    [CrossRef] [PubMed]
  11. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1259 (2006).
    [CrossRef] [PubMed]
  12. A. Ishikawa, T. Tanaka, and S. Kawata, J. Opt. Soc. Am. B 24, 510 (2007).
    [CrossRef]
  13. T. Amemiya, T. Shindo, D. Takahashi, N. Nishiyama, and S. Arai, J. Quantum Electron. 47, 736 (2011).
    [CrossRef]
  14. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
    [CrossRef]

2011 (1)

T. Amemiya, T. Shindo, D. Takahashi, N. Nishiyama, and S. Arai, J. Quantum Electron. 47, 736 (2011).
[CrossRef]

2010 (1)

2009 (2)

M. S. Rill, C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, Opt. Lett. 34, 19 (2009).
[CrossRef]

M. K. Smit, R. Baets, and M. Wale, in IEEE Proceedings of the European Conference on Optical Communication (IEEE, 2009), paper 1.7.3.

2007 (4)

2006 (1)

2005 (1)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

2003 (2)

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. E 67, 057602 (2003).
[CrossRef]

A. C. Peacock and N. G. R. Broaderick, Opt. Express 11, 2502 (2003).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Amemiya, T.

T. Amemiya, T. Shindo, D. Takahashi, N. Nishiyama, and S. Arai, J. Quantum Electron. 47, 736 (2011).
[CrossRef]

Arai, S.

T. Amemiya, T. Shindo, D. Takahashi, N. Nishiyama, and S. Arai, J. Quantum Electron. 47, 736 (2011).
[CrossRef]

Atwater, H. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
[CrossRef] [PubMed]

Baets, R.

M. K. Smit, R. Baets, and M. Wale, in IEEE Proceedings of the European Conference on Optical Communication (IEEE, 2009), paper 1.7.3.

Blumenthal, D. J.

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007).
[CrossRef] [PubMed]

Broaderick, N. G. R.

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Cai, W.

Chettiar, U. K.

Coldren, L. A.

de Silva, V. C.

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
[CrossRef] [PubMed]

Drachev, V. P.

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1259 (2006).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Ishikawa, A.

Jevremovic, B.

Kawata, S.

Kildishev, A. V.

Kivshar, Y. S.

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. E 67, 057602 (2003).
[CrossRef]

Klein, M. W.

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Kriegler, C. E.

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
[CrossRef] [PubMed]

Linden, S.

Lively, E.

Masanovic, M. L.

Nicholes, S. C.

Nishiyama, N.

T. Amemiya, T. Shindo, D. Takahashi, N. Nishiyama, and S. Arai, J. Quantum Electron. 47, 736 (2011).
[CrossRef]

Peacock, A. C.

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Rill, M. S.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Shadrivov, I. V.

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. E 67, 057602 (2003).
[CrossRef]

Shalaev, V. M.

Shindo, T.

T. Amemiya, T. Shindo, D. Takahashi, N. Nishiyama, and S. Arai, J. Quantum Electron. 47, 736 (2011).
[CrossRef]

Smit, M. K.

M. K. Smit, R. Baets, and M. Wale, in IEEE Proceedings of the European Conference on Optical Communication (IEEE, 2009), paper 1.7.3.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Soukoulis, C. M.

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1259 (2006).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Sukhorukov, A. A.

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. E 67, 057602 (2003).
[CrossRef]

Takahashi, D.

T. Amemiya, T. Shindo, D. Takahashi, N. Nishiyama, and S. Arai, J. Quantum Electron. 47, 736 (2011).
[CrossRef]

Tanaka, T.

Thiel, M.

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007).
[CrossRef] [PubMed]

von Freymann, G.

Wale, M.

M. K. Smit, R. Baets, and M. Wale, in IEEE Proceedings of the European Conference on Optical Communication (IEEE, 2009), paper 1.7.3.

Wegener, M.

Yuan, H. K.

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Quantum Electron. (1)

T. Amemiya, T. Shindo, D. Takahashi, N. Nishiyama, and S. Arai, J. Quantum Electron. 47, 736 (2011).
[CrossRef]

Nature (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. E (1)

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. E 67, 057602 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Science (1)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
[CrossRef] [PubMed]

Other (1)

M. K. Smit, R. Baets, and M. Wale, in IEEE Proceedings of the European Conference on Optical Communication (IEEE, 2009), paper 1.7.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Waveguide-based multimode interferometer (GaInAsP/InP 1 × 1 MMI) and metamaterial region consisting of metal SRR array attached onto the MMI.

Fig. 2
Fig. 2

(a) Enlarged oblique views of 4-cut SRRs, and (b) 2-cut SRRs observed with scanning electron microscopy; (c) Oblique view of completed device, and (d) cross-sectional view of 300 × 300 nm SRRs buried in the SiO 2 layer.

Fig. 3
Fig. 3

Transmission-intensity ratio (2-cut SRR/4-cut SRR) for devices with SRR size of (a)  300 × 300 nm , (b)  350 × 350 nm , (c)  400 × 400 nm , and (d)  500 × 500 nm as a function of wavelength from 1420 to 1575 nm , measured for TE-mode light.

Fig. 4
Fig. 4

(a) Calculated transmission intensity ratio (dashed curve) compared with the measured data [closed circles, from Fig. 3b]. (b) Transmittance and reflectance estimated for a row of SRRs. Insets visualize distribution of electric field (magnitude and direction) in SRR at minimum transmission frequencies. (c) Effective permeability (real and imaginary parts) of SRR array.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( E x H z ) | top   air = m ( cosh ( β m d m ) j ω μ 0 μ z z m β m sinh ( β m d m ) β m j ω μ 0 μ z z m sinh ( β m d m ) cosh ( β m d m ) ) ( E x H z ) | bottom   InP β m = ( μ z z m / μ y y m ) β 2 k 0 2 ε x x m μ z z m ,

Metrics