Abstract

Parallel processing in femtosecond-laser-based microfabrication is demonstrated using a microlens array in conjunction with a liquid-crystal spatial light modulator (SLM). A portion of the SLM is mapped onto each individual lenslet in the array and can be used to effectively switch foci on and off for fabrication. In addition, the technique allows for homogenizing the intensity of the array of foci and translating spots relative to their natural focus. The technique demonstrates the potential for high efficiency processing of aperiodic structures.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
    [CrossRef]
  2. G. Della Valle, R. Osellame, and P. Laporta, J. Opt. A 11, 013001 (2009).
    [CrossRef]
  3. M. J. Ventura, M. Straub, and M. Gu, Appl. Phys. Lett. 82, 1649 (2003).
    [CrossRef]
  4. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, Nat. Mater. 7, 543 (2008).
    [CrossRef] [PubMed]
  5. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, Opt. Express 12, 1908 (2004).
    [CrossRef] [PubMed]
  6. S. Hasegawa, Y. Hayasaki, and N. Nishida, Opt. Lett. 31, 1705 (2006).
    [CrossRef] [PubMed]
  7. A. Jesacher and M. J. Booth, Opt. Express 18, 21090 (2010).
    [CrossRef] [PubMed]
  8. D. Kim and P. T. C. So, Opt. Lett. 35, 1602 (2010).
    [CrossRef] [PubMed]
  9. J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, Appl. Phys. Lett. 86, 044102 (2005).
    [CrossRef]
  10. S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. A 80, 683 (2004).
    [CrossRef]
  11. K. Rastani, C. Lin, and J. S. Patel, Appl. Opt. 31, 3046 (1992).
    [CrossRef] [PubMed]

2010 (2)

2009 (1)

G. Della Valle, R. Osellame, and P. Laporta, J. Opt. A 11, 013001 (2009).
[CrossRef]

2008 (2)

R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, Nat. Mater. 7, 543 (2008).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

2004 (2)

2003 (1)

M. J. Ventura, M. Straub, and M. Gu, Appl. Phys. Lett. 82, 1649 (2003).
[CrossRef]

1992 (1)

Adachi, Y.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Booth, M. J.

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, J. Opt. A 11, 013001 (2009).
[CrossRef]

Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, Nat. Mater. 7, 543 (2008).
[CrossRef] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
[CrossRef]

Gu, M.

M. J. Ventura, M. Straub, and M. Gu, Appl. Phys. Lett. 82, 1649 (2003).
[CrossRef]

Hasegawa, S.

Hayasaki, Y.

Hirao, K.

Jesacher, A.

Juodkazis, S.

S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. A 80, 683 (2004).
[CrossRef]

Kato, J.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Kawata, S.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Kim, D.

Kuroiwa, Y.

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, J. Opt. A 11, 013001 (2009).
[CrossRef]

Lin, C.

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, Nat. Mater. 7, 543 (2008).
[CrossRef] [PubMed]

Matsuo, S.

S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. A 80, 683 (2004).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
[CrossRef]

Misawa, H.

S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. A 80, 683 (2004).
[CrossRef]

Narita, Y.

Nishida, N.

Osellame, R.

G. Della Valle, R. Osellame, and P. Laporta, J. Opt. A 11, 013001 (2009).
[CrossRef]

Patel, J. S.

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, Nat. Mater. 7, 543 (2008).
[CrossRef] [PubMed]

Rastani, K.

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, Nat. Mater. 7, 543 (2008).
[CrossRef] [PubMed]

So, P. T. C.

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, Nat. Mater. 7, 543 (2008).
[CrossRef] [PubMed]

Straub, M.

M. J. Ventura, M. Straub, and M. Gu, Appl. Phys. Lett. 82, 1649 (2003).
[CrossRef]

Sun, H.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Takeshima, N.

Takeyasu, N.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Tanaka, S.

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, Nat. Mater. 7, 543 (2008).
[CrossRef] [PubMed]

Ventura, M. J.

M. J. Ventura, M. Straub, and M. Gu, Appl. Phys. Lett. 82, 1649 (2003).
[CrossRef]

Wegener, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, Nat. Mater. 7, 543 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. A (1)

S. Matsuo, S. Juodkazis, and H. Misawa, Appl. Phys. A 80, 683 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

M. J. Ventura, M. Straub, and M. Gu, Appl. Phys. Lett. 82, 1649 (2003).
[CrossRef]

J. Opt. A (1)

G. Della Valle, R. Osellame, and P. Laporta, J. Opt. A 11, 013001 (2009).
[CrossRef]

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, Nat. Mater. 7, 543 (2008).
[CrossRef] [PubMed]

Nat. Photon. (1)

R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for addressable multispot micromachining. The inset shows an image of a 2 × 2 segment of the microlens array mapped onto the SLM (a binary phase checkerboard is applied to the region of the SLM corresponding to the top right lenslet).

Fig. 2
Fig. 2

(a) Intensity distribution at the focus of the objective, where several microlenses in the array have been deactivated for fabrication through spatially spreading the incident pulse energy at the focus. (b) Resultant fabricated array of voids on the surface of a fused silica slab. (c) Images of a 2 × 2 section of the system, showing the phase pattern applied to the SLM, the subsequent intensity distribution in the focal plane of the objective, and the associated ablation of fused silica.

Fig. 3
Fig. 3

Active region of the SLM corresponding to a single microlens with a flat phase profile and (a) a π phase shift introduced to a random selection of pixels to reduce the focal intensity by 10%. (b) Images of the array of foci before and (c) after (d) the homogenization process. The resultant fabrication is seen on the surface of fused silica without and (e) with (f) homogenization of the microlens array.

Fig. 4
Fig. 4

Phase pattern applied to the SLM to variably steer individual lenslet foci and create a 4 × 4 aperiodic array of foci, before and (a) after, (b) taking into account the SLM beam steering inefficiency. The associated focal intensity distribution and surface ablation are shown in (c) and (d), respectively.

Metrics