Abstract

We experimentally demonstrate a new type of add–drop filter incorporating an asymmetric Y-branch waveguide coupler and a shifted-grating mode-conversion cavity. The device relies on mode separation in the asymmetric Y-branch and wavelength-selective mode conversion upon reflection from the shifted-grating cavity. Add–drop functionality is demonstrated in a three-port integrated silicon-on-insulator device.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
    [CrossRef]
  2. J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, Opt. Lett. 32, 1253 (2007).
    [CrossRef] [PubMed]
  3. W. K. Burns and A. F. Milton, IEEE J. Quantum Electron. QE-16, 446 (1980).
    [CrossRef]
  4. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, Opt. Commun. 21043 (2002).
    [CrossRef]
  5. A. S. Kewitsch, G. A. Rakuljic, P. A. Willems, and A. Yariv, Opt. Lett. 23, 106 (1998).
    [CrossRef]
  6. D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, Electron Lett. 37, 829 (2001).
    [CrossRef]
  7. J. M. Castro, D. F. Geraghty, B. R. West, and S. Honkanen, Appl. Opt. 43, 6166 (2004).
    [CrossRef] [PubMed]
  8. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, Opt. Express 13, 4180 (2005).
    [CrossRef] [PubMed]
  9. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, Opt. Lett. 32, 533 (2007).
    [CrossRef] [PubMed]
  10. C. M. Greiner, D. Iazikov, and T. W. Mossberg, IEEE Photon. Technol. Lett. 182677 (2006).
    [CrossRef]
  11. W. S. Rabinovich, T. H. Stievater, N. A. Papanicolaou, D. S. Katzer, and P. G. Goetz, Appl. Phys. Lett. 83, 1923 (2003).
    [CrossRef]

2007 (2)

2006 (1)

C. M. Greiner, D. Iazikov, and T. W. Mossberg, IEEE Photon. Technol. Lett. 182677 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

W. S. Rabinovich, T. H. Stievater, N. A. Papanicolaou, D. S. Katzer, and P. G. Goetz, Appl. Phys. Lett. 83, 1923 (2003).
[CrossRef]

2002 (1)

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, Opt. Commun. 21043 (2002).
[CrossRef]

2001 (1)

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, Electron Lett. 37, 829 (2001).
[CrossRef]

1998 (1)

1997 (1)

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
[CrossRef]

1980 (1)

W. K. Burns and A. F. Milton, IEEE J. Quantum Electron. QE-16, 446 (1980).
[CrossRef]

Burns, W. K.

W. K. Burns and A. F. Milton, IEEE J. Quantum Electron. QE-16, 446 (1980).
[CrossRef]

Cassan, E.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, Opt. Commun. 21043 (2002).
[CrossRef]

Castro, J. M.

Dumont, B.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, Opt. Commun. 21043 (2002).
[CrossRef]

Geraghty, D. F.

Goetz, P. G.

W. S. Rabinovich, T. H. Stievater, N. A. Papanicolaou, D. S. Katzer, and P. G. Goetz, Appl. Phys. Lett. 83, 1923 (2003).
[CrossRef]

Greiner, C. M.

Hagness, S. C.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
[CrossRef]

Ho, S. T.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
[CrossRef]

Honkanen, S.

Iazikov, D.

Katzer, D. S.

W. S. Rabinovich, T. H. Stievater, N. A. Papanicolaou, D. S. Katzer, and P. G. Goetz, Appl. Phys. Lett. 83, 1923 (2003).
[CrossRef]

Kewitsch, A. S.

Khurgin, J. B.

Koster, A.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, Opt. Commun. 21043 (2002).
[CrossRef]

Lardenois, S.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, Opt. Commun. 21043 (2002).
[CrossRef]

Laval, S.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, Opt. Commun. 21043 (2002).
[CrossRef]

Milton, A. F.

W. K. Burns and A. F. Milton, IEEE J. Quantum Electron. QE-16, 446 (1980).
[CrossRef]

Morrell, M.

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, Electron Lett. 37, 829 (2001).
[CrossRef]

Mossberg, T. W.

Papanicolaou, N. A.

W. S. Rabinovich, T. H. Stievater, N. A. Papanicolaou, D. S. Katzer, and P. G. Goetz, Appl. Phys. Lett. 83, 1923 (2003).
[CrossRef]

Peyghambarian, N.

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, Electron Lett. 37, 829 (2001).
[CrossRef]

Provenzano, D.

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, Electron Lett. 37, 829 (2001).
[CrossRef]

Pruessner, M. W.

Rabinovich, W. S.

Rafizadeh, D.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
[CrossRef]

Rakuljic, G. A.

Stievater, T. H.

Taflove, A.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
[CrossRef]

Vivien, L.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, Opt. Commun. 21043 (2002).
[CrossRef]

West, B. R.

Willems, P. A.

Yariv, A.

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, Electron Lett. 37, 829 (2001).
[CrossRef]

A. S. Kewitsch, G. A. Rakuljic, P. A. Willems, and A. Yariv, Opt. Lett. 23, 106 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. S. Rabinovich, T. H. Stievater, N. A. Papanicolaou, D. S. Katzer, and P. G. Goetz, Appl. Phys. Lett. 83, 1923 (2003).
[CrossRef]

Electron Lett. (1)

D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, and N. Peyghambarian, Electron Lett. 37, 829 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. K. Burns and A. F. Milton, IEEE J. Quantum Electron. QE-16, 446 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. M. Greiner, D. Iazikov, and T. W. Mossberg, IEEE Photon. Technol. Lett. 182677 (2006).
[CrossRef]

J. Lightwave Technol. (1)

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
[CrossRef]

Opt. Commun. (1)

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, Opt. Commun. 21043 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) ADF schematic showing MCC and asymmetric Y splitter. (b) Fabricated device with partial views of the asymmetric Y splitter and the shifted-grating MCC (not to scale); the MCC utilizes two sets of silicon/air grating mirrors, each having two λ / 4 = 387 nm air gaps, a single 5 λ / 4 n Si = 556 nm silicon slab, and a Δ G = 5 λ G / 4 n Si = 556 nm grating shift at x = 0 . (c) FDTD simulation of the cavity power with a TM 1 incident at the input shifted grating. The waveguide widths are W IN = 4 μm , W THRU = 8 μm , and W DROP = 12 μm .

Fig. 2
Fig. 2

Experimental setup. (inset) Tapered fiber aligned to collect the TM 1 mode at the DROP port. Det., photodetector.

Fig. 3
Fig. 3

Measured Y splitter: (a) (left) Excitation of TM 1 waveguide mode; (right)  TM 1 mode profile at λ = 1550 nm . (b) (left) Excitation of TM 0 mode; (right)  TM 0 profile at λ = 1550 nm . The mode profiles were obtained by scanning the tapered fiber across the waveguide facet using voltage- controlled translation stages.

Fig. 4
Fig. 4

ADF measurements: (a) Measured DROP and THRU spectra. (b) Measured DROP ( TM 1 ) and THRU ( TM 0 ) mode profiles at the λ = 1472.6 nm resonance. The data in (a) are normalized by the asymmetric Y-splitter data in Fig. 3.

Fig. 5
Fig. 5

FDTD simulations of the ADF MCC: (a) ADF MCC spectrum including waveguide propagation and mirror losses, (b) “ideal” ADF MCC spectrum with no loss. The shaded area in (b) corresponds to the resonance near the grating shift design wavelength, λ G . The dip and spurious peak just to the left of the DROP resonance near λ G in (b) may be attributed to incomplete TM 0 TM 1 mode conversion.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ 01 = κ 10 = ( 2 Δ n / λ 0 ) f 0 ( x , y ) S ( x ) f 1 ( x , y ) d x d y ,

Metrics