Abstract

We present a method to accurately measure the group birefringence variation with temperature in high- birefringence polarization-maintaining (PM) fibers using a distributed polarization analyzer. By analyzing po larization cross-talk peaks purposely induced at both ends of a PM fiber, the temperature coefficient of group birefringence can be accurately obtained. We confirm the theoretical prediction that the group birefringence of PANDA and TIGER PM fibers decrease linearly with temperature from 40°C to 80°C, and find that the temperature coefficients are 5.93×107°C1 and 5.29×107°C1 for two types of PANDA fibers, and 5.36×107°C1 for a TIGER fiber.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Mochizuki, Y. Namihira, and Y. Ejiri, Appl. Opt. 21, 4223 (1982).
    [CrossRef] [PubMed]
  2. D. A. Flavin, R. McBride, and J. D. C. Jones, Opt. Lett. 27, 1010 (2002).
    [CrossRef]
  3. P. Hlubina and D. Ciprian, Opt. Express 15, 17019 (2007).
    [CrossRef] [PubMed]
  4. K. Kikuchi and T. Okoshi, Opt. Lett. 8, 122 (1983).
    [CrossRef] [PubMed]
  5. Z.-L. Duan, L.-Y. Ren, Y.-N. Zhang, H.-Y. Wang, B.-L. Yao, and W. Zha, Microw. Opt. Technol. Lett. 52, 1466 (2010).
    [CrossRef]
  6. P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
    [CrossRef]
  7. K.-H. Tsai, K.-S. Kim, and T. F. Morse, J. Lightwave Technol. 9, 7 (1991).
    [CrossRef]
  8. P. Martin, G. Le Boudec, and H. C. Lefèvre, Proc. SPIE 1585, 173 (1992).
    [CrossRef]
  9. F. Tang, X. Wang, Y. Zhang, and W. Jing, Opt. Lett. 31, 3411 (2006).
    [CrossRef] [PubMed]
  10. H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, Opt. Express 18, 141 (2010).
    [CrossRef] [PubMed]

2010 (2)

Z.-L. Duan, L.-Y. Ren, Y.-N. Zhang, H.-Y. Wang, B.-L. Yao, and W. Zha, Microw. Opt. Technol. Lett. 52, 1466 (2010).
[CrossRef]

H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, Opt. Express 18, 141 (2010).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2002 (1)

1992 (1)

P. Martin, G. Le Boudec, and H. C. Lefèvre, Proc. SPIE 1585, 173 (1992).
[CrossRef]

1991 (1)

K.-H. Tsai, K.-S. Kim, and T. F. Morse, J. Lightwave Technol. 9, 7 (1991).
[CrossRef]

1989 (1)

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

1983 (1)

1982 (1)

Alard, F. R.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Choi, H. Y.

Ciprian, D.

Duan, Z.-L.

Z.-L. Duan, L.-Y. Ren, Y.-N. Zhang, H.-Y. Wang, B.-L. Yao, and W. Zha, Microw. Opt. Technol. Lett. 52, 1466 (2010).
[CrossRef]

Durteste, Y.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Ejiri, Y.

Flavin, D. A.

Francois, P.-L.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Hlubina, P.

Jing, W.

Jones, J. D. C.

Kikuchi, K.

Kim, K.-S.

K.-H. Tsai, K.-S. Kim, and T. F. Morse, J. Lightwave Technol. 9, 7 (1991).
[CrossRef]

Le Boudec, G.

P. Martin, G. Le Boudec, and H. C. Lefèvre, Proc. SPIE 1585, 173 (1992).
[CrossRef]

Lee, B. H.

Lefèvre, H. C.

P. Martin, G. Le Boudec, and H. C. Lefèvre, Proc. SPIE 1585, 173 (1992).
[CrossRef]

Martin, P.

P. Martin, G. Le Boudec, and H. C. Lefèvre, Proc. SPIE 1585, 173 (1992).
[CrossRef]

McBride, R.

Mochizuki, K.

Monerie, M.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Morse, T. F.

K.-H. Tsai, K.-S. Kim, and T. F. Morse, J. Lightwave Technol. 9, 7 (1991).
[CrossRef]

Mudhana, G.

Namihira, Y.

Okoshi, T.

Paek, U.-C.

Park, K. S.

Ren, L.-Y.

Z.-L. Duan, L.-Y. Ren, Y.-N. Zhang, H.-Y. Wang, B.-L. Yao, and W. Zha, Microw. Opt. Technol. Lett. 52, 1466 (2010).
[CrossRef]

Tang, F.

Tsai, K.-H.

K.-H. Tsai, K.-S. Kim, and T. F. Morse, J. Lightwave Technol. 9, 7 (1991).
[CrossRef]

Vassallo, C.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Wang, H.-Y.

Z.-L. Duan, L.-Y. Ren, Y.-N. Zhang, H.-Y. Wang, B.-L. Yao, and W. Zha, Microw. Opt. Technol. Lett. 52, 1466 (2010).
[CrossRef]

Wang, X.

Yao, B.-L.

Z.-L. Duan, L.-Y. Ren, Y.-N. Zhang, H.-Y. Wang, B.-L. Yao, and W. Zha, Microw. Opt. Technol. Lett. 52, 1466 (2010).
[CrossRef]

Zha, W.

Z.-L. Duan, L.-Y. Ren, Y.-N. Zhang, H.-Y. Wang, B.-L. Yao, and W. Zha, Microw. Opt. Technol. Lett. 52, 1466 (2010).
[CrossRef]

Zhang, Y.

Zhang, Y.-N.

Z.-L. Duan, L.-Y. Ren, Y.-N. Zhang, H.-Y. Wang, B.-L. Yao, and W. Zha, Microw. Opt. Technol. Lett. 52, 1466 (2010).
[CrossRef]

Appl. Opt. (1)

J. Lightwave Technol. (2)

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

K.-H. Tsai, K.-S. Kim, and T. F. Morse, J. Lightwave Technol. 9, 7 (1991).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

Z.-L. Duan, L.-Y. Ren, Y.-N. Zhang, H.-Y. Wang, B.-L. Yao, and W. Zha, Microw. Opt. Technol. Lett. 52, 1466 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (1)

P. Martin, G. Le Boudec, and H. C. Lefèvre, Proc. SPIE 1585, 173 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Simplified illustration of a distributed polarization cross-talk analyzer designed to obtain space- resolved polarization coupling along a length of PM fiber. The insert shows the delay relation between the original and the cross talk components. The PM fiber under test is placed inside a temperature chamber to expose it to different temperatures. Slight fiber axis misalignments at input and output connectors are induced to cause large polarization cross talks. MDL, FRM, PD, and DAQ are motorized delay line, Faraday rotation mirror, photodetector, and data acquisition card, respectively.

Fig. 2
Fig. 2

(a) Polarization cross-talk curves of a PM fiber as a function of the relative delay at 40 ° C , 0 ° C , and 40 °C . The peaks at the far left and right correspond to the cross talk induced at the input and output connectors, respectively, by slight axis misalignment. The rest of the peaks are induced by the stress of the fiber in various locations, which are not the concern of this paper. (b) Measured Δ n b at seven different temperatures.

Tables (2)

Tables Icon

Table 1 Measurement Results of the Thermal Coefficient γ of Three Different PM Fibers

Tables Icon

Table 2 Description and Estimation of Measurement Errors a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ n b = γ ( T 0 T ) ,
Δ Z = Z Δ n b ,
δ Δ n b / Δ n b = ( δ Δ Z / Δ Z ) 2 + ( δ Z / Z ) 2 = ( δ Δ Z / Δ n b ) 2 + ( δ Z ) 2 / Z .

Metrics