Abstract

Through the use of anamorphic focusing, we present a method for generating broadband noncollinear optical parametric amplification in signal regions lacking a broadband phase-matching condition that is ideally suited for narrowband pump sources, herein based on an erbium-doped fiber oscillator. With a short focal length cylindrical lens to enhance the phase-matching condition and a long focal length cylindrical lens in the orthogonal plane to limit the pump power in the amplifying beta barium borate crystal, we amplify pulses in the blue–green spectral region with over 100THz (3500cm1) bandwidth. The amplified signal is subsequently compressed to 9.5fs, near the transform limit.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 (1997).
    [CrossRef]
  2. A. Baltuška, T. Fuji, and T. Kobayashi, Opt. Lett. 27, 306 (2002).
    [CrossRef]
  3. J. Limpert, C. Aguergaray, S. Montant, I. Manek-Hönninger, S. Petit, D. Descamps, E. Cormier, and F. Salin, Opt. Express 13, 7386 (2005).
    [CrossRef] [PubMed]
  4. C. Aguergaray, O. Schmidt, J. Rothhardt, D. Schimpf, D. Descamps, S. Petit, J. Limpert, and E. Cormier, Opt. Express 17, 5153 (2009).
    [CrossRef] [PubMed]
  5. G. Arisholm, J. Biegert, P. Schlup, C. P. Hauri, and U. Keller, Opt. Express 12, 518 (2004).
    [CrossRef] [PubMed]
  6. L. Cardoso, H. Pires, and G. Figueira, Opt. Lett. 34, 1369 (2009).
    [CrossRef] [PubMed]
  7. T. Harimoto and K. Yamakawa, Jpn. J. Appl. Phys. 44, 3962 (2005).
    [CrossRef]
  8. P. Tzankov, I. Buchvarov, and T. Fiebig, Opt. Commun. 203, 107 (2002).
    [CrossRef]
  9. O. Isaienko and E. Borguet, Opt. Express 16, 3949 (2008).
    [CrossRef] [PubMed]
  10. M. R. Armstrong, P. Plachta, E. A. Ponomarev, and R. J. Dwayne Miller, Opt. Lett. 26, 1152 (2001).
    [CrossRef]
  11. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]
  12. V. I. Prokhorenko, A. M. Nagy, and R. J. Dwayne Miller, J. Chem. Phys. 122, 184502 (2005).
    [CrossRef] [PubMed]
  13. R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
    [CrossRef]
  14. P. J. M. Johnson, V. I. Prokhorenko, and R. J. Dwayne Miller, Opt. Express 17, 21488 (2009).
    [CrossRef] [PubMed]

2009 (3)

2008 (1)

2005 (3)

J. Limpert, C. Aguergaray, S. Montant, I. Manek-Hönninger, S. Petit, D. Descamps, E. Cormier, and F. Salin, Opt. Express 13, 7386 (2005).
[CrossRef] [PubMed]

T. Harimoto and K. Yamakawa, Jpn. J. Appl. Phys. 44, 3962 (2005).
[CrossRef]

V. I. Prokhorenko, A. M. Nagy, and R. J. Dwayne Miller, J. Chem. Phys. 122, 184502 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (2)

A. Baltuška, T. Fuji, and T. Kobayashi, Opt. Lett. 27, 306 (2002).
[CrossRef]

P. Tzankov, I. Buchvarov, and T. Fiebig, Opt. Commun. 203, 107 (2002).
[CrossRef]

2001 (1)

1997 (2)

T. Wilhelm, J. Piel, and E. Riedle, Opt. Lett. 22, 1494 (1997).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

1991 (1)

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
[CrossRef]

Aguergaray, C.

Arisholm, G.

Armstrong, M. R.

Baltuška, A.

Biegert, J.

Bigot, J.-Y.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
[CrossRef]

Borguet, E.

Buchvarov, I.

P. Tzankov, I. Buchvarov, and T. Fiebig, Opt. Commun. 203, 107 (2002).
[CrossRef]

Cardoso, L.

Cormier, E.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Descamps, D.

Fiebig, T.

P. Tzankov, I. Buchvarov, and T. Fiebig, Opt. Commun. 203, 107 (2002).
[CrossRef]

Figueira, G.

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Fuji, T.

Harimoto, T.

T. Harimoto and K. Yamakawa, Jpn. J. Appl. Phys. 44, 3962 (2005).
[CrossRef]

Hauri, C. P.

Isaienko, O.

Johnson, P. J. M.

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Keller, U.

Kobayashi, T.

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Limpert, J.

Manek-Hönninger, I.

Miller, R. J. Dwayne

Montant, S.

Nagy, A. M.

V. I. Prokhorenko, A. M. Nagy, and R. J. Dwayne Miller, J. Chem. Phys. 122, 184502 (2005).
[CrossRef] [PubMed]

Petit, S.

Piel, J.

Pires, H.

Plachta, P.

Ponomarev, E. A.

Portella, M. T.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
[CrossRef]

Prokhorenko, V. I.

P. J. M. Johnson, V. I. Prokhorenko, and R. J. Dwayne Miller, Opt. Express 17, 21488 (2009).
[CrossRef] [PubMed]

V. I. Prokhorenko, A. M. Nagy, and R. J. Dwayne Miller, J. Chem. Phys. 122, 184502 (2005).
[CrossRef] [PubMed]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Riedle, E.

Rothhardt, J.

Salin, F.

Schimpf, D.

Schlup, P.

Schmidt, O.

Schoenlein, R. W.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
[CrossRef]

Shank, C. V.

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
[CrossRef]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Tzankov, P.

P. Tzankov, I. Buchvarov, and T. Fiebig, Opt. Commun. 203, 107 (2002).
[CrossRef]

Wilhelm, T.

Yamakawa, K.

T. Harimoto and K. Yamakawa, Jpn. J. Appl. Phys. 44, 3962 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

R. W. Schoenlein, J.-Y. Bigot, M. T. Portella, and C. V. Shank, Appl. Phys. Lett. 58, 801 (1991).
[CrossRef]

J. Chem. Phys. (1)

V. I. Prokhorenko, A. M. Nagy, and R. J. Dwayne Miller, J. Chem. Phys. 122, 184502 (2005).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

T. Harimoto and K. Yamakawa, Jpn. J. Appl. Phys. 44, 3962 (2005).
[CrossRef]

Opt. Commun. (1)

P. Tzankov, I. Buchvarov, and T. Fiebig, Opt. Commun. 203, 107 (2002).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Phasematching curves for both conventional (dark) and anamorphic (light) pumping conditions as described in the text. The dashed line corresponds to the phase-matching angle for the NOPA. Inset: beam geometry in the phase-matching plane, where the dashed line corresponds with the seed direction.

Fig. 2
Fig. 2

Schematic for the anamorphic pump NOPA. BS, beam splitter; VOD, variable optical density filter; ID, iris diaphragm; L, lens; OAPM, off-axis parabolic mirror; SM 1 and SM 2 , spherical mirrors; HWP, λ / 2 wave plate; SHG, second harmonic generation BBO crystal; CLP, cylindrical lens pair.

Fig. 3
Fig. 3

Beam profiles imaged on a diffuser. (a) The anamorphic pump NOPA directly after collimation, showing a circular beam profile with some spatial chirp. (b) The far-field profile at the focal plane of an f = 1 m lens. The spatial chirp observed in the collimated beam is not present in the focused beam profile.

Fig. 4
Fig. 4

(a) Normalized spectral intensity of the anamorphic pump NOPA (solid curve) showing a 100 THz output, as compared to the spherical lens NOPA (dashed curve), both in good agreement with the expected phase matching from Fig. 1. (b) Measured transient grating FROG and (c) retrieved temporal electric field and phase profiles of the compressed pulse with a temporal FWHM of 9.5 fs .

Metrics