Abstract

We have demonstrated an all-diode-pumped Yb:YAG chirped pulse amplification laser that produces 100mJ pulses of 5ps duration at 100Hz repetition rate. The compact laser system combines a room-temperature Yb:YAG regenerative amplifier for increased bandwidth and a cryogenically cooled Yb:YAG four-pass amplifier for improved heat dissipation and increased efficiency. The optical efficiency of this amplifier is higher than that of other diode-pumped systems of comparable energy.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, Opt. Express 19, 5357 (2011).
    [CrossRef] [PubMed]
  2. F. J. Furch, B. A. Reagan, B. M. Luther, A. H. Curtis, S. P. Meehan, and J. J. Rocca, Opt. Lett. 34, 3352 (2009).
    [CrossRef] [PubMed]
  3. J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, Opt. Lett. 34, 1378 (2009).
    [CrossRef] [PubMed]
  4. D. H. Martz, D. Alessi, B. M. Luther, Y. Wang, D. Kemp, M. Berrill, and J. J. Rocca, Opt. Lett. 35, 1632 (2010).
    [CrossRef] [PubMed]
  5. T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, Opt. Lett. 34, 2123 (2009).
    [CrossRef] [PubMed]
  6. Y. Akahane, M. Aoyama, K. Ogawa, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, Opt. Lett. 32, 1899 (2007).
    [CrossRef] [PubMed]
  7. K. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, and F. X. Kärtner, Opt. Lett. 35, 1752 (2010).
    [CrossRef] [PubMed]
  8. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, J. Appl. Phys. 98, 103514 (2005).
    [CrossRef]
  9. P. Klopp, V. Petrov, U. Griebner, and G. Erbert, Opt. Express 10, 108 (2002).
    [PubMed]
  10. R. Paschotta, J. Aus der Au, G. J. Spühler, S. Erhard, A. Giesen, and U. Keller, Appl. Phys. B 72, 267 (2001).
  11. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, J. Opt. Soc. Am. B 20, 1975 (2003).
    [CrossRef]
  12. A. Giesen and J. Speiser, IEEE J. Sel. Top. Quantum Electron. 13, 598 (2007).
    [CrossRef]

2011

2010

2009

2007

2005

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

2003

2002

2001

R. Paschotta, J. Aus der Au, G. J. Spühler, S. Erhard, A. Giesen, and U. Keller, Appl. Phys. B 72, 267 (2001).

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Ahmad, I.

Akahane, Y.

Alessi, D.

Aoyama, M.

Aus der Au, J.

R. Paschotta, J. Aus der Au, G. J. Spühler, S. Erhard, A. Giesen, and U. Keller, Appl. Phys. B 72, 267 (2001).

Bass, M.

Berrill, M.

Curtis, A. H.

Deng, P.

Dong, J.

Eggleton, B. J.

Erbert, G.

Erhard, S.

R. Paschotta, J. Aus der Au, G. J. Spühler, S. Erhard, A. Giesen, and U. Keller, Appl. Phys. B 72, 267 (2001).

Fan, T. Y.

Furch, F. J.

Gan, F.

Giesen, A.

A. Giesen and J. Speiser, IEEE J. Sel. Top. Quantum Electron. 13, 598 (2007).
[CrossRef]

R. Paschotta, J. Aus der Au, G. J. Spühler, S. Erhard, A. Giesen, and U. Keller, Appl. Phys. B 72, 267 (2001).

Gopinath, J. T.

Griebner, U.

Hong, K.

Huang, S.

Hybl, J. D.

Jung, R.

Karsch, S.

Kärtner, F. X.

Kawanaka, J.

Keller, U.

R. Paschotta, J. Aus der Au, G. J. Spühler, S. Erhard, A. Giesen, and U. Keller, Appl. Phys. B 72, 267 (2001).

Kemp, D.

Kienberger, R.

Killi, A.

Klingebiel, S.

Klopp, P.

Krausz, F.

Li, E.

Luther, B. M.

Major, Z.

Mao, Y.

Martz, D. H.

Meehan, S. P.

Metzger, T.

Nickles, P. V.

Nishioka, H.

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Ogawa, K.

Paschotta, R.

R. Paschotta, J. Aus der Au, G. J. Spühler, S. Erhard, A. Giesen, and U. Keller, Appl. Phys. B 72, 267 (2001).

Petrov, V.

Rand, D.

Reagan, B. A.

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Rocca, J. J.

Sandner, W.

Schwarz, A.

Siddiqui, A. M.

Skrobol, C.

Speiser, J.

A. Giesen and J. Speiser, IEEE J. Sel. Top. Quantum Electron. 13, 598 (2007).
[CrossRef]

Spühler, G. J.

R. Paschotta, J. Aus der Au, G. J. Spühler, S. Erhard, A. Giesen, and U. Keller, Appl. Phys. B 72, 267 (2001).

Stiel, H.

Sutter, D.

Teisset, C. Y.

Tokita, S.

Trushin, S. A.

Tsuji, K.

Tümmler, J.

Wandt, C.

Wang, Y.

Yamakawa, K.

Appl. Phys. B

R. Paschotta, J. Aus der Au, G. J. Spühler, S. Erhard, A. Giesen, and U. Keller, Appl. Phys. B 72, 267 (2001).

IEEE J. Sel. Top. Quantum Electron.

A. Giesen and J. Speiser, IEEE J. Sel. Top. Quantum Electron. 13, 598 (2007).
[CrossRef]

J. Appl. Phys.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the compact, diode-pumped Yb:YAG laser system. FR, Faraday rotator; PC, Pockels cell; TFP, thin film polarizer; WP, waveplate; LD, laser diode.

Fig. 2
Fig. 2

Output pulse energy as a function of pump diode peak power at 100 Hz repetition rate. The optical efficiency of the second stage amplifier is 20%. The inset image shows the 140 mJ beam exiting the amplifier.

Fig. 3
Fig. 3

(a) Spectra of laser pulses after the first (thinner blue line) and second (thicker red line) stages of amplification. Pulses exiting the first stage have a bandwidth of 0.55 nm FWHM, which narrows to 0.35 nm FWHM after the second amplifier. (b) Second harmonic autocorrelation traces of compressed amplified pulses after the first (blue circles) and second (red squares) amplification stages. Solid lines are sech 2 fits of the data. Pulses exiting the first stage can be compressed to 3.6 ps FWHM, while amplified 100 mJ pulses are compressed to 4.8 ps FWHM.

Metrics