Abstract

A single-input whispering gallery optical microbubble resonator is presented. Spherical microbubbles with diam eters less than 100μm, micrometer-sized wall thicknesses, and a single opening or input were fabricated by heating the tapered tip of a pressurized glass capillary using a CO2 laser. Optical whispering gallery modes with Q factors of 105 were obtained. The bubbles were filled with water and mode shifts of 20GHz were observed. Fano-type resonances were detected when the coupling optical fiber diameter was less than 1μm, causing the microresonator to switch from being a band-stop filter to a bandpass filter. Larger bubbles with submicrometer wall thickness were also fabricated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Optical Processes in Microcavities, R.K.Chang and A.J.Campillo, eds., (World Scientific, 1996).
    [CrossRef]
  2. K. J. Vahala, Nature 424, 839 (2003).
    [CrossRef] [PubMed]
  3. J. M. Ward, Y. Wu, K. Khalfi, and S. Nic Chormaic, Rev. Sci. Instrum. 81, 073106 (2010).
    [CrossRef] [PubMed]
  4. J. M. Ward, P. Féron, and S. Nic Chormaic, IEEE Photon. Technol. Lett. 20, 392 (2008).
    [CrossRef]
  5. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
    [CrossRef] [PubMed]
  6. J. M. Ward, D. G. O’Shea, B. J. Shortt, and S. Nic Chormaic, J. Appl. Phys. 102, 023104 (2007).
    [CrossRef]
  7. T. J. Kippenberg and K. J. Vahala, Opt. Express 15, 17172(2007).
    [CrossRef] [PubMed]
  8. J. M. Ward, Y. Wu, V. G. Minogin, and S. Nic Chormaic, Phys. Rev. A 79, 053839 (2009).
    [CrossRef]
  9. H. Zhu, J. D. Suter, I. M. White, and X. Fan, Sensors 6, 785 (2006).
    [CrossRef]
  10. F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
    [CrossRef] [PubMed]
  11. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Nat. Phys. 5, 909 (2009).
    [CrossRef]
  12. M. Sumetsky, Y. Dulashko, and R. S. Windeler, Opt. Lett. 35, 898 (2010).
    [CrossRef] [PubMed]
  13. M. Sumetsky, Y. Dulashko, and R. S. Windeler, Opt. Lett. 35, 1866 (2010).
    [CrossRef] [PubMed]
  14. H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, Opt. Express 18, 25081 (2010).
    [CrossRef] [PubMed]
  15. T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, Appl. Opt. 38, 6845 (1999).
    [CrossRef]
  16. J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, Rev. Sci. Instrum. 77, 083105 (2006).
    [CrossRef]

2010 (4)

2009 (2)

J. M. Ward, Y. Wu, V. G. Minogin, and S. Nic Chormaic, Phys. Rev. A 79, 053839 (2009).
[CrossRef]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Nat. Phys. 5, 909 (2009).
[CrossRef]

2008 (2)

J. M. Ward, P. Féron, and S. Nic Chormaic, IEEE Photon. Technol. Lett. 20, 392 (2008).
[CrossRef]

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef] [PubMed]

2007 (2)

T. J. Kippenberg and K. J. Vahala, Opt. Express 15, 17172(2007).
[CrossRef] [PubMed]

J. M. Ward, D. G. O’Shea, B. J. Shortt, and S. Nic Chormaic, J. Appl. Phys. 102, 023104 (2007).
[CrossRef]

2006 (3)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef] [PubMed]

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, Rev. Sci. Instrum. 77, 083105 (2006).
[CrossRef]

H. Zhu, J. D. Suter, I. M. White, and X. Fan, Sensors 6, 785 (2006).
[CrossRef]

2003 (1)

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

1999 (1)

Anetsberger, G.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Nat. Phys. 5, 909 (2009).
[CrossRef]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef] [PubMed]

Arcizet, O.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Nat. Phys. 5, 909 (2009).
[CrossRef]

Arnold, S.

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef] [PubMed]

Birks, T. A.

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef] [PubMed]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef] [PubMed]

Deasy, K.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, Rev. Sci. Instrum. 77, 083105 (2006).
[CrossRef]

Dimmick, T. E.

Dulashko, Y.

Fan, X.

Féron, P.

J. M. Ward, P. Féron, and S. Nic Chormaic, IEEE Photon. Technol. Lett. 20, 392 (2008).
[CrossRef]

Guo, Y.

Kakarantzas, G.

Khalfi, K.

J. M. Ward, Y. Wu, K. Khalfi, and S. Nic Chormaic, Rev. Sci. Instrum. 81, 073106 (2010).
[CrossRef] [PubMed]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef] [PubMed]

Kippenberg, T. J.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Nat. Phys. 5, 909 (2009).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, Opt. Express 15, 17172(2007).
[CrossRef] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef] [PubMed]

Kotthaus, J. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Nat. Phys. 5, 909 (2009).
[CrossRef]

Li, H.

Minogin, V. G.

J. M. Ward, Y. Wu, V. G. Minogin, and S. Nic Chormaic, Phys. Rev. A 79, 053839 (2009).
[CrossRef]

Morrissey, M. J.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, Rev. Sci. Instrum. 77, 083105 (2006).
[CrossRef]

Nic Chormaic, S.

J. M. Ward, Y. Wu, K. Khalfi, and S. Nic Chormaic, Rev. Sci. Instrum. 81, 073106 (2010).
[CrossRef] [PubMed]

J. M. Ward, Y. Wu, V. G. Minogin, and S. Nic Chormaic, Phys. Rev. A 79, 053839 (2009).
[CrossRef]

J. M. Ward, P. Féron, and S. Nic Chormaic, IEEE Photon. Technol. Lett. 20, 392 (2008).
[CrossRef]

J. M. Ward, D. G. O’Shea, B. J. Shortt, and S. Nic Chormaic, J. Appl. Phys. 102, 023104 (2007).
[CrossRef]

Nic Chormaic, S. G.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, Rev. Sci. Instrum. 77, 083105 (2006).
[CrossRef]

O’Shea, D. G.

J. M. Ward, D. G. O’Shea, B. J. Shortt, and S. Nic Chormaic, J. Appl. Phys. 102, 023104 (2007).
[CrossRef]

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, Rev. Sci. Instrum. 77, 083105 (2006).
[CrossRef]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef] [PubMed]

Reddy, K.

Rivière, R.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Nat. Phys. 5, 909 (2009).
[CrossRef]

Russell, P. St. J.

Schliesser, A.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Nat. Phys. 5, 909 (2009).
[CrossRef]

Shortt, B. J.

J. M. Ward, D. G. O’Shea, B. J. Shortt, and S. Nic Chormaic, J. Appl. Phys. 102, 023104 (2007).
[CrossRef]

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, Rev. Sci. Instrum. 77, 083105 (2006).
[CrossRef]

Sumetsky, M.

Sun, Y.

Suter, J. D.

H. Zhu, J. D. Suter, I. M. White, and X. Fan, Sensors 6, 785 (2006).
[CrossRef]

Unterreithmeier, Q. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Nat. Phys. 5, 909 (2009).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, Opt. Express 15, 17172(2007).
[CrossRef] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef] [PubMed]

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

Vollmer, F.

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef] [PubMed]

Ward, J. M.

J. M. Ward, Y. Wu, K. Khalfi, and S. Nic Chormaic, Rev. Sci. Instrum. 81, 073106 (2010).
[CrossRef] [PubMed]

J. M. Ward, Y. Wu, V. G. Minogin, and S. Nic Chormaic, Phys. Rev. A 79, 053839 (2009).
[CrossRef]

J. M. Ward, P. Féron, and S. Nic Chormaic, IEEE Photon. Technol. Lett. 20, 392 (2008).
[CrossRef]

J. M. Ward, D. G. O’Shea, B. J. Shortt, and S. Nic Chormaic, J. Appl. Phys. 102, 023104 (2007).
[CrossRef]

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, Rev. Sci. Instrum. 77, 083105 (2006).
[CrossRef]

Weig, E. M.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Nat. Phys. 5, 909 (2009).
[CrossRef]

White, I. M.

H. Zhu, J. D. Suter, I. M. White, and X. Fan, Sensors 6, 785 (2006).
[CrossRef]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef] [PubMed]

Windeler, R. S.

Wu, Y.

J. M. Ward, Y. Wu, K. Khalfi, and S. Nic Chormaic, Rev. Sci. Instrum. 81, 073106 (2010).
[CrossRef] [PubMed]

J. M. Ward, Y. Wu, V. G. Minogin, and S. Nic Chormaic, Phys. Rev. A 79, 053839 (2009).
[CrossRef]

Zhu, H.

H. Zhu, J. D. Suter, I. M. White, and X. Fan, Sensors 6, 785 (2006).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

J. M. Ward, P. Féron, and S. Nic Chormaic, IEEE Photon. Technol. Lett. 20, 392 (2008).
[CrossRef]

J. Appl. Phys. (1)

J. M. Ward, D. G. O’Shea, B. J. Shortt, and S. Nic Chormaic, J. Appl. Phys. 102, 023104 (2007).
[CrossRef]

Nat. Methods (1)

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef] [PubMed]

Nat. Phys. (1)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Nat. Phys. 5, 909 (2009).
[CrossRef]

Nature (2)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[CrossRef] [PubMed]

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

J. M. Ward, Y. Wu, V. G. Minogin, and S. Nic Chormaic, Phys. Rev. A 79, 053839 (2009).
[CrossRef]

Rev. Sci. Instrum. (2)

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. Nic Chormaic, Rev. Sci. Instrum. 77, 083105 (2006).
[CrossRef]

J. M. Ward, Y. Wu, K. Khalfi, and S. Nic Chormaic, Rev. Sci. Instrum. 81, 073106 (2010).
[CrossRef] [PubMed]

Sensors (1)

H. Zhu, J. D. Suter, I. M. White, and X. Fan, Sensors 6, 785 (2006).
[CrossRef]

Other (1)

Optical Processes in Microcavities, R.K.Chang and A.J.Campillo, eds., (World Scientific, 1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the optical micro bubble resonator formation. The OD of a typical capillary used in the experiment ranges from 25 to 100 μm . The CO 2 laser power used is approximately 0.625 W and is focused using a lens with a 6.5 cm focal length. (b)  300 μm bubble viewed from the top showing the excess material on the side. (c) The same bubble as in (b) viewed from the side. (d)  400 μm reformed bubble viewed from the top. The inset shows the same bubble viewed from the side with excess material on the top. The wall thickness is submicrometer.

Fig. 2
Fig. 2

Image of a microbubble formed in the CO 2 laser. (a)  Diameter = 90 μm . (b) WGM spectrum of bubble shown in (a). The wall thickness is approximately 4 to 8 μm .

Fig. 3
Fig. 3

(a) Upper trace, transmitted power when the bubble is coupled to a section of the tapered fiber with a diameter greater than 1 μm . Lower trace, bubble is moved to a section where the taper diameter is less than 1 μm . (b) Higher resolution scan of the transmitted power when the bubble is coupled via a tapered fiber with a diameter of less than 1 μm .

Fig. 4
Fig. 4

4 GHz shift of the microbubble modes when water enters the cavity.

Metrics