Abstract

We demonstrate, by experiment and numerical calculations, temperature-independent subwavelength grating waveguides with a periodic composite core composed of alternating regions of silicon and SU-8 polymer. The polymer has a negative thermo-optic (TO) material coefficient that cancels the large positive TO effect of the silicon. Measurements and Bloch mode calculations were carried out over a range of silicon–polymer duty ratios. The lowest measured TO coefficient at a wavelength of 1550nm is 1.8×106K1; 2 orders of magnitude smaller than a conventional silicon photonic wire waveguide. Calculations predict the possibility of complete cancellation of the silicon waveguide temperature dependence.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, IEEE Photon. Technol. Lett. 18, 2520 (2006).
    [CrossRef]
  2. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, Opt. Express 15, 2299 (2007).
    [CrossRef] [PubMed]
  3. J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, J. Lightwave Technol. 25, 2236 (2007).
    [CrossRef]
  4. W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
    [CrossRef]
  5. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, Opt. Express 17, 14627 (2009).
    [CrossRef] [PubMed]
  6. J.-M. Lee, D.-J. Kim, G.-H. Kim, O-K. Kwon, K.-J. Kim, and G. Kim, Opt. Express 16, 1645 (2008).
    [CrossRef] [PubMed]
  7. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, Opt. Express 18, 20251 (2010).
    [CrossRef] [PubMed]
  8. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, J. Lightwave Technol. 20, 1968 (2002).
    [CrossRef]
  9. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, Opt. Lett. 35, 2526 (2010).
    [CrossRef] [PubMed]
  10. http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands.

2010 (2)

2009 (1)

2008 (2)

J.-M. Lee, D.-J. Kim, G.-H. Kim, O-K. Kwon, K.-J. Kim, and G. Kim, Opt. Express 16, 1645 (2008).
[CrossRef] [PubMed]

W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
[CrossRef]

2007 (2)

2006 (1)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

2002 (1)

Aers, G. C.

Ahn, H.

Baets, R.

Bock, P. J.

Bogaerts, W.

Cheben, P.

Dalton, L. R.

Delâge, A.

Densmore, A.

Dumon, P.

Hall, T. J.

Han, X.

Janz, S.

Jian, X.

Kim, D.-J.

Kim, G.

Kim, G.-H.

Kim, K.-J.

Kimerling, L. C.

W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
[CrossRef]

Kwon, O-K.

Lamontagne, B.

Lapointe, J.

Lee, J.-M.

Michel, J.

W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
[CrossRef]

Morthier, G.

Park, S.-H.

Post, E.

P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, Opt. Express 15, 2299 (2007).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

Rabiei, P.

Schmid, J. H.

Steier, W. H.

Teng, J.

Waldron, P.

P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, Opt. Express 15, 2299 (2007).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, IEEE Photon. Technol. Lett. 18, 2520 (2006).
[CrossRef]

Xu, D.-X.

Ye, W. N.

W. N. Ye, J. Michel, and L. C. Kimerling, IEEE Photon. Technol. Lett. 20, 885 (2008).
[CrossRef]

Zhang, C.

Zhang, H.

Zhao, M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of an SU-8 clad silicon SWG waveguide. (b)–(d) SEM micrographs of SWG waveguides with duty cycles of 46%, 56%, and 66%. (e) Optical micrograph of an unbalanced MZI device with SWG sections. Arrows indicate the positions of wire-to-SWG waveguide couplers. The continuation of the device beyond the field of view is indicated schematically on the right-hand side of the picture for clarity.

Fig. 2
Fig. 2

Temperature-dependent transmission spectra of MZI devices for different SWG duty ratios. A sign reversal from negative to positive temperature-induced wavelength shifts is observed for increasing duty cycle.

Fig. 3
Fig. 3

Measured TO coefficient of photonic wire (PW) and SWG waveguides of various duty cycles (d.c.) indicated in the figure as functions of wavelength with linear fits (solid lines). (a) TE and (b) TM polarization.

Fig. 4
Fig. 4

Experimental and theoretical results for the effective TO coefficient of SU-8 clad silicon SWG waveguides as a function of grating duty cycle.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d n eff d T = n g λ d λ d T ,

Metrics