Abstract

We report a fiber-optic evanescent-wave (EW) sensor capable of dramatically increasing the power collection level by capturing the EW power that is normally lost. The key element is a taper with a thin overlay that is completely separated from the sample by an arbitrary distance and thus operates remotely within the instrumentation system. A two-stage tuning of the close-to-cutoff modes occurring within this element is proposed to interpret the observed phenomenon.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).
    [CrossRef] [PubMed]
  2. G. P. Anderson, J. P. Golden, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 578 (1994).
    [CrossRef] [PubMed]
  3. J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 585 (1994).
    [CrossRef] [PubMed]
  4. M. Ahmad and L. L. Hench, Biosens. Bioelectron. 20, 1312 (2005).
    [CrossRef]
  5. B. D. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. F. McGilp, Electron. Lett. 27, 1247 (1991).
    [CrossRef]
  6. B. D. MacCraith, C. McDonagh, A. K. McEvoy, T. Butler, G. O’Keeffe, and V. Murphy, J. Sol-Gel Sci. Technol. 8, 1053 (1997).
    [CrossRef]
  7. B. D. MacCraith and C. McDonagh, J. Fluoresc. 12, 333 (2002).
    [CrossRef]
  8. W. Cao and Y. Duan, Sens. Actuators B Chem. 119, 363 (2006).
    [CrossRef]
  9. J. Ma and W. J. Bock, Opt. Lett. 32, 8 (2007).
    [CrossRef]
  10. J. Ma, W. J. Bock, and A. Cusano, Opt. Express 17, 7630 (2009).
    [CrossRef] [PubMed]
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall Ltd., 1983).

2009

2007

2006

W. Cao and Y. Duan, Sens. Actuators B Chem. 119, 363 (2006).
[CrossRef]

2005

C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).
[CrossRef] [PubMed]

M. Ahmad and L. L. Hench, Biosens. Bioelectron. 20, 1312 (2005).
[CrossRef]

2002

B. D. MacCraith and C. McDonagh, J. Fluoresc. 12, 333 (2002).
[CrossRef]

1997

B. D. MacCraith, C. McDonagh, A. K. McEvoy, T. Butler, G. O’Keeffe, and V. Murphy, J. Sol-Gel Sci. Technol. 8, 1053 (1997).
[CrossRef]

1994

G. P. Anderson, J. P. Golden, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 578 (1994).
[CrossRef] [PubMed]

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 585 (1994).
[CrossRef] [PubMed]

1991

B. D. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. F. McGilp, Electron. Lett. 27, 1247 (1991).
[CrossRef]

Ahmad, M.

M. Ahmad and L. L. Hench, Biosens. Bioelectron. 20, 1312 (2005).
[CrossRef]

Anderson, G. P.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).
[CrossRef] [PubMed]

G. P. Anderson, J. P. Golden, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 578 (1994).
[CrossRef] [PubMed]

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 585 (1994).
[CrossRef] [PubMed]

Bock, W. J.

Butler, T.

B. D. MacCraith, C. McDonagh, A. K. McEvoy, T. Butler, G. O’Keeffe, and V. Murphy, J. Sol-Gel Sci. Technol. 8, 1053 (1997).
[CrossRef]

Cao, W.

W. Cao and Y. Duan, Sens. Actuators B Chem. 119, 363 (2006).
[CrossRef]

Cusano, A.

Duan, Y.

W. Cao and Y. Duan, Sens. Actuators B Chem. 119, 363 (2006).
[CrossRef]

Golden, J. P.

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 585 (1994).
[CrossRef] [PubMed]

G. P. Anderson, J. P. Golden, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 578 (1994).
[CrossRef] [PubMed]

Hench, L. L.

M. Ahmad and L. L. Hench, Biosens. Bioelectron. 20, 1312 (2005).
[CrossRef]

Ligler, F. S.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).
[CrossRef] [PubMed]

G. P. Anderson, J. P. Golden, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 578 (1994).
[CrossRef] [PubMed]

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 585 (1994).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall Ltd., 1983).

Ma, J.

MacCraith, B. D.

B. D. MacCraith and C. McDonagh, J. Fluoresc. 12, 333 (2002).
[CrossRef]

B. D. MacCraith, C. McDonagh, A. K. McEvoy, T. Butler, G. O’Keeffe, and V. Murphy, J. Sol-Gel Sci. Technol. 8, 1053 (1997).
[CrossRef]

B. D. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. F. McGilp, Electron. Lett. 27, 1247 (1991).
[CrossRef]

McDonagh, C.

B. D. MacCraith and C. McDonagh, J. Fluoresc. 12, 333 (2002).
[CrossRef]

B. D. MacCraith, C. McDonagh, A. K. McEvoy, T. Butler, G. O’Keeffe, and V. Murphy, J. Sol-Gel Sci. Technol. 8, 1053 (1997).
[CrossRef]

McEvoy, A. K.

B. D. MacCraith, C. McDonagh, A. K. McEvoy, T. Butler, G. O’Keeffe, and V. Murphy, J. Sol-Gel Sci. Technol. 8, 1053 (1997).
[CrossRef]

McGilp, J. F.

B. D. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. F. McGilp, Electron. Lett. 27, 1247 (1991).
[CrossRef]

Murphy, V.

B. D. MacCraith, C. McDonagh, A. K. McEvoy, T. Butler, G. O’Keeffe, and V. Murphy, J. Sol-Gel Sci. Technol. 8, 1053 (1997).
[CrossRef]

O’Keeffe, G.

B. D. MacCraith, C. McDonagh, A. K. McEvoy, T. Butler, G. O’Keeffe, and V. Murphy, J. Sol-Gel Sci. Technol. 8, 1053 (1997).
[CrossRef]

O’Kelly, B.

B. D. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. F. McGilp, Electron. Lett. 27, 1247 (1991).
[CrossRef]

Potter, C.

B. D. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. F. McGilp, Electron. Lett. 27, 1247 (1991).
[CrossRef]

Rabbany, S. Y.

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 585 (1994).
[CrossRef] [PubMed]

Ruddy, V.

B. D. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. F. McGilp, Electron. Lett. 27, 1247 (1991).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall Ltd., 1983).

Taitt, C. R.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).
[CrossRef] [PubMed]

Biosens. Bioelectron.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, Biosens. Bioelectron. 20, 2470 (2005).
[CrossRef] [PubMed]

M. Ahmad and L. L. Hench, Biosens. Bioelectron. 20, 1312 (2005).
[CrossRef]

Electron. Lett.

B. D. MacCraith, V. Ruddy, C. Potter, B. O’Kelly, and J. F. McGilp, Electron. Lett. 27, 1247 (1991).
[CrossRef]

IEEE Trans. Biomed. Eng.

G. P. Anderson, J. P. Golden, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 578 (1994).
[CrossRef] [PubMed]

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, IEEE Trans. Biomed. Eng. 41, 585 (1994).
[CrossRef] [PubMed]

J. Fluoresc.

B. D. MacCraith and C. McDonagh, J. Fluoresc. 12, 333 (2002).
[CrossRef]

J. Sol-Gel Sci. Technol.

B. D. MacCraith, C. McDonagh, A. K. McEvoy, T. Butler, G. O’Keeffe, and V. Murphy, J. Sol-Gel Sci. Technol. 8, 1053 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators B Chem.

W. Cao and Y. Duan, Sens. Actuators B Chem. 119, 363 (2006).
[CrossRef]

Other

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall Ltd., 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fiber-optic EW sensor with a taper. (Inset 1) Arrangement of the fibers and the sample. (Inset 2) Tapers surrounded by air, or covered by thick or thin RI gel (part no. F1-0001, Fiber Instrument Sales, Inc.) overlay. The point of origin of the OZ axis starts at the taper–cylinder transition cross section.

Fig. 2
Fig. 2

Recorded IR spectra illustrating the output powers for the three taper arrangments. I R 0 is the level of the EW power I R without the influence of the taper segment.

Fig. 3
Fig. 3

Photograph showing the characteristics of the platform. (a) Long taper; (b) taper profile traced by the leaked power I 0 ( ) ; (c) appearance of the taper-overlay element; (d) platform in operation mode, showing that the EW power increase is triggered externally. Refer to the text for detail.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( Z = 0 ) = I 0 ( ) .
I 0 ( ± ) = I lq h , t ( ± ) , I ( Z = 0 ) = I lq h , t ( ) .
I R = I h , t cl ( + ) + η h , t · I h , t lq ( ) , η h , t < 1 ,
I h , t lq ( + ) I R 0 ,
I R 0 = I h , t cl ( + ) ,
I R = I h , t cl ( + ) = I R 0 , η h , t = 0.
I R η h , t · I h lq ( ) I R 0 .
I ( Z = 0 ) I ctc lq ( ) = I h _ ctc lq ( ) + I t lq ( ) ,
I R η ctc I ctc lq ( ) = η h _ ctc I h _ ctc lq ( ) + η t I t lq ( ) , η ctc , η h _ ctc , η t < 1 ,

Metrics