Abstract

We demonstrate a high-sensitivity broadband (12501650nm) fiber micro-Michelson interferometer using a single-mode fiber end-spliced with a sphered-end hollow-core fiber. The hollow core is slightly smaller than the solid core of a single-mode fiber, so the fractional power of the core mode is converted into cladding modes. The excited cladding modes propagate at distinct optical paths along the hollow-core fiber and have individual foci outside the spherical lens. The reflected core mode, generated at the solid core–air interface, and the reflected cladding modes, generated at external material, interfere with each other to produce beating in the interference signals.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Lin, X. Jiang, F. Xie, W. Zhang, L. Zhang, and I. Bennion, Opt. Express 12, 5729 (2004).
    [CrossRef] [PubMed]
  2. N. Krstajíć, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, Meas. Sci. Technol. 22, 027002 (2011).
    [CrossRef]
  3. N. K. Chen and Z. Z. Feng, Opt. Lett. 35, 2109 (2010).
    [CrossRef] [PubMed]
  4. Z. Tian, S. S.-H. Yam, and H. Loock, Opt. Lett. 33, 1105(2008).
    [CrossRef] [PubMed]
  5. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, Opt. Express 16, 11369 (2008).
    [CrossRef] [PubMed]
  6. Y. Jung, S. Lee, B. H. Lee, and K. Oh, Opt. Lett. 33, 2934 (2008).
    [CrossRef] [PubMed]
  7. S. Kim, J. Park, and W. T. Han, Microw. Opt. Technol. Lett. 51, 1689 (2009).
    [CrossRef]
  8. M. de Vrie, V. Arya, S. Meller, S. F. Ma, and R. O. Clausa, Cem. Concr. Compos. 19, 69 (1997).
    [CrossRef]
  9. L. J. Atkins and R. C. Elliott, Am. J. Phys. 78, 1248 (2010).
    [CrossRef]

2011 (1)

N. Krstajíć, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, Meas. Sci. Technol. 22, 027002 (2011).
[CrossRef]

2010 (2)

L. J. Atkins and R. C. Elliott, Am. J. Phys. 78, 1248 (2010).
[CrossRef]

N. K. Chen and Z. Z. Feng, Opt. Lett. 35, 2109 (2010).
[CrossRef] [PubMed]

2009 (1)

S. Kim, J. Park, and W. T. Han, Microw. Opt. Technol. Lett. 51, 1689 (2009).
[CrossRef]

2008 (3)

2004 (1)

1997 (1)

M. de Vrie, V. Arya, S. Meller, S. F. Ma, and R. O. Clausa, Cem. Concr. Compos. 19, 69 (1997).
[CrossRef]

Arya, V.

M. de Vrie, V. Arya, S. Meller, S. F. Ma, and R. O. Clausa, Cem. Concr. Compos. 19, 69 (1997).
[CrossRef]

Atkins, L. J.

L. J. Atkins and R. C. Elliott, Am. J. Phys. 78, 1248 (2010).
[CrossRef]

Bennion, I.

Chen, N. K.

Childs, D.

N. Krstajíć, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, Meas. Sci. Technol. 22, 027002 (2011).
[CrossRef]

Chung, Y.

Clausa, R. O.

M. de Vrie, V. Arya, S. Meller, S. F. Ma, and R. O. Clausa, Cem. Concr. Compos. 19, 69 (1997).
[CrossRef]

de Vrie, M.

M. de Vrie, V. Arya, S. Meller, S. F. Ma, and R. O. Clausa, Cem. Concr. Compos. 19, 69 (1997).
[CrossRef]

Elliott, R. C.

L. J. Atkins and R. C. Elliott, Am. J. Phys. 78, 1248 (2010).
[CrossRef]

Feng, Z. Z.

Han, W. T.

S. Kim, J. Park, and W. T. Han, Microw. Opt. Technol. Lett. 51, 1689 (2009).
[CrossRef]

Hogg, R.

N. Krstajíć, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, Meas. Sci. Technol. 22, 027002 (2011).
[CrossRef]

Hwang, D.

Jiang, X.

Jung, Y.

Kim, S.

S. Kim, J. Park, and W. T. Han, Microw. Opt. Technol. Lett. 51, 1689 (2009).
[CrossRef]

Krstajíc, N.

N. Krstajíć, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, Meas. Sci. Technol. 22, 027002 (2011).
[CrossRef]

Lee, B. H.

Lee, S.

Lin, D.

Loock, H.

Ma, S. F.

M. de Vrie, V. Arya, S. Meller, S. F. Ma, and R. O. Clausa, Cem. Concr. Compos. 19, 69 (1997).
[CrossRef]

Matcher, S. J.

N. Krstajíć, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, Meas. Sci. Technol. 22, 027002 (2011).
[CrossRef]

Meller, S.

M. de Vrie, V. Arya, S. Meller, S. F. Ma, and R. O. Clausa, Cem. Concr. Compos. 19, 69 (1997).
[CrossRef]

Moon, D. S.

Moon, S.

Nguyen, L. V.

Oh, K.

Park, J.

S. Kim, J. Park, and W. T. Han, Microw. Opt. Technol. Lett. 51, 1689 (2009).
[CrossRef]

Smallwood, R.

N. Krstajíć, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, Meas. Sci. Technol. 22, 027002 (2011).
[CrossRef]

Tian, Z.

Xie, F.

Yam, S. S.-H.

Zhang, L.

Zhang, W.

Am. J. Phys. (1)

L. J. Atkins and R. C. Elliott, Am. J. Phys. 78, 1248 (2010).
[CrossRef]

Cem. Concr. Compos. (1)

M. de Vrie, V. Arya, S. Meller, S. F. Ma, and R. O. Clausa, Cem. Concr. Compos. 19, 69 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

N. Krstajíć, D. Childs, R. Smallwood, R. Hogg, and S. J. Matcher, Meas. Sci. Technol. 22, 027002 (2011).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

S. Kim, J. Park, and W. T. Han, Microw. Opt. Technol. Lett. 51, 1689 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Single-mode fiber with an end-spliced HOF ( L = 43.9 μm ). (b) Cross-sectional view of the HOF where the core and cladding diameter are measured as 7.1 and 129 μm , respectively. (c) Micro-FMI with an end-collapsed HOF ( L = 240 μm ). (d) Micro-FMI with a sphered-end HOF based on the sample in Fig. 1c. The radius of the fiber spherical lens is 81 μm and the red lines depict the optical path diagram.

Fig. 2
Fig. 2

Transmission spectra of the micro-FMI with an end-cleaved HOF at the length of (a) a few tens of micrometers and (b) a few hundreds of micrometers, RES = 1 nm .

Fig. 3
Fig. 3

Far field mode patterns of the FMI with an (a) end-cleaved HOF and (b) end-sphered HOF when both are at L = 240 μm at 635 nm laser wavelength.

Fig. 4
Fig. 4

Transmission spectra of the FMI with an HOF (a) with different end shapes and (b) with an external moving mirror after HOF, RES = 1 nm .

Fig. 5
Fig. 5

Intensity beating signals using a 1570 nm DFB laser.

Metrics