Abstract

Depth extraction is an important aspect of three-dimensional (3D) image processing with digital holograms and an essential step in extended focus imaging and metrology. All available depth extraction techniques with macroscopic objects are based on variance; however, the effectiveness of this is object dependent. We propose to use disparity between corresponding points in intensity reconstructions to determine depth. Our method requires a single hologram of a scene, from which we reconstruct two different perspectives. In the reconstruction the phase information is not needed, which makes this method useful for in-line digital holography. To our knowledge disparity based 3D image processing has never been proposed before for digital holography.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kreis, Handbook of Holographic Interferometry(Wiley-VCH, 2005).
  2. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
    [CrossRef]
  3. F. Charrière, A. Marian, F. Montfort, J. Kühn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, Opt. Lett. 31, 178 (2006).
    [CrossRef] [PubMed]
  4. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, Opt. Express 13, 6738 (2005).
    [CrossRef] [PubMed]
  5. Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, Exp. Mech. 45, 65 (2005).
    [CrossRef]
  6. L. Ma, H. Wang, Y. Li, and H. Jin, J. Opt. A: Pure Appl. Opt. 6, 396 (2004).
    [CrossRef]
  7. S. Frey, A. Thelen, S. Hirsch, and P. Hering, Appl. Opt. 46, 1986 (2007).
    [CrossRef] [PubMed]
  8. C. P. Mc Elhinney, J. B. McDonald, A. Castro, Y. Frauel, B. Javidi, and T. J. Naughton, Opt. Lett. 32, 1229(2007).
    [CrossRef]
  9. D. Marr and T. Poggio, Science 194, 283 (1976).
    [CrossRef] [PubMed]
  10. D. Scharstein and R. Szelisk, Intl. J. Comp. Vision 47, 7 (2002).
    [CrossRef]
  11. L. K. Cormack, S. B. Stevenson, and C. M. Schor, Vision Res. 31, 2195 (1991).
    [CrossRef] [PubMed]
  12. E. Darakis, T. J. Naughton, and J. J. Soraghan, Appl. Opt. 46, 4579 (2007).
    [CrossRef] [PubMed]

2007 (3)

2006 (2)

2005 (2)

2004 (1)

L. Ma, H. Wang, Y. Li, and H. Jin, J. Opt. A: Pure Appl. Opt. 6, 396 (2004).
[CrossRef]

2002 (1)

D. Scharstein and R. Szelisk, Intl. J. Comp. Vision 47, 7 (2002).
[CrossRef]

1991 (1)

L. K. Cormack, S. B. Stevenson, and C. M. Schor, Vision Res. 31, 2195 (1991).
[CrossRef] [PubMed]

1976 (1)

D. Marr and T. Poggio, Science 194, 283 (1976).
[CrossRef] [PubMed]

Alfieri, D.

Castro, A.

Charrière, F.

Colomb, T.

Coppola, G.

Cormack, L. K.

L. K. Cormack, S. B. Stevenson, and C. M. Schor, Vision Res. 31, 2195 (1991).
[CrossRef] [PubMed]

Cuche, E.

Darakis, E.

De Nicola, S.

Depeursinge, C.

Ferraro, P.

Finizio, A.

Frauel, Y.

C. P. Mc Elhinney, J. B. McDonald, A. Castro, Y. Frauel, B. Javidi, and T. J. Naughton, Opt. Lett. 32, 1229(2007).
[CrossRef]

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Frey, S.

Fujigaki, M.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, Exp. Mech. 45, 65 (2005).
[CrossRef]

Grilli, S.

Hering, P.

Hirsch, S.

Javidi, B.

Jin, H.

L. Ma, H. Wang, Y. Li, and H. Jin, J. Opt. A: Pure Appl. Opt. 6, 396 (2004).
[CrossRef]

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry(Wiley-VCH, 2005).

Kühn, J.

Li, Y.

L. Ma, H. Wang, Y. Li, and H. Jin, J. Opt. A: Pure Appl. Opt. 6, 396 (2004).
[CrossRef]

Ma, L.

L. Ma, H. Wang, Y. Li, and H. Jin, J. Opt. A: Pure Appl. Opt. 6, 396 (2004).
[CrossRef]

Marian, A.

Marquet, P.

Marr, D.

D. Marr and T. Poggio, Science 194, 283 (1976).
[CrossRef] [PubMed]

Matoba, O.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Mc Elhinney, C. P.

McDonald, J. B.

Montfort, F.

Morimoto, Y.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, Exp. Mech. 45, 65 (2005).
[CrossRef]

Naughton, T. J.

Nomura, T.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, Exp. Mech. 45, 65 (2005).
[CrossRef]

Pierattini, G.

Poggio, T.

D. Marr and T. Poggio, Science 194, 283 (1976).
[CrossRef] [PubMed]

Scharstein, D.

D. Scharstein and R. Szelisk, Intl. J. Comp. Vision 47, 7 (2002).
[CrossRef]

Schor, C. M.

L. K. Cormack, S. B. Stevenson, and C. M. Schor, Vision Res. 31, 2195 (1991).
[CrossRef] [PubMed]

Soraghan, J. J.

Stevenson, S. B.

L. K. Cormack, S. B. Stevenson, and C. M. Schor, Vision Res. 31, 2195 (1991).
[CrossRef] [PubMed]

Striano, V.

Szelisk, R.

D. Scharstein and R. Szelisk, Intl. J. Comp. Vision 47, 7 (2002).
[CrossRef]

Tajahuerce, E.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Takahashi, I.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, Exp. Mech. 45, 65 (2005).
[CrossRef]

Thelen, A.

Wang, H.

L. Ma, H. Wang, Y. Li, and H. Jin, J. Opt. A: Pure Appl. Opt. 6, 396 (2004).
[CrossRef]

Yoneyama, S.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, Exp. Mech. 45, 65 (2005).
[CrossRef]

Appl. Opt. (2)

Exp. Mech. (1)

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, Exp. Mech. 45, 65 (2005).
[CrossRef]

Intl. J. Comp. Vision (1)

D. Scharstein and R. Szelisk, Intl. J. Comp. Vision 47, 7 (2002).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

L. Ma, H. Wang, Y. Li, and H. Jin, J. Opt. A: Pure Appl. Opt. 6, 396 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. IEEE (1)

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Science (1)

D. Marr and T. Poggio, Science 194, 283 (1976).
[CrossRef] [PubMed]

Vision Res. (1)

L. K. Cormack, S. B. Stevenson, and C. M. Schor, Vision Res. 31, 2195 (1991).
[CrossRef] [PubMed]

Other (1)

T. Kreis, Handbook of Holographic Interferometry(Wiley-VCH, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Disparity with holograms: P1, P2, different perspectives; A, B, and C, points on the epipolar line in the reconstructed intensity image; R, reconstruction plane. (b) Illustration of size and position (perspective) of different window sizes, e.g. (1)  2048 × 2048 pixels, (2)  2048 × 1024 , and (6)  512 × 512 .

Fig. 2
Fig. 2

Middlebury’s test image comparison: (a) left perspective, (b) right perspective, (c) ground truth, (d) output of our algorithm.

Fig. 3
Fig. 3

Input image (a) from left perspective, and (b) the calculated DSI. Increased absolute disparity means those parts of the object are farther away from the reconstruction distance.

Fig. 4
Fig. 4

Reconstruction using a different hologram. (a) Left perspective with window size 512 × 512 pixels, (b) zoomed part of (a), (c) zoomed part with larger 2048 × 1024 window showing increased quality for the left pin but lower depth of field.

Fig. 5
Fig. 5

Relief plot of the DSI from object shown in Fig. 4a.

Fig. 6
Fig. 6

DSIs with different window sizes: (a)  2048 × 1024 , (b)  1536 × 1024 , (c)  1024 × 1024 , (d)  768 × 768 , (e)  512 × 512 , and (f)  128 × 128 pixels.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Λ ( x , y ) = { 0 , if x 0 f ( x , y ) otherwise ,
P ( x , y ) = { 0 , if x < 0 f ( x , y ) otherwise ,
F z ( x , y ) = | i λ z H ( x , y ) * exp [ i π ( x 2 + y 2 ) λ z ] | 2 ,
DSI ( x , y ) = { argmax u ( C x , y ( u ) ) , if max u ( C x , y ( u ) ) > τ undefined , otherwise ,
C x , y ( u ) = x , y L ˜ x , y R ˜ x , y ( u ) [ x , y ( L ˜ x , y ) 2 x , y ( R ˜ x , y ( u ) ) 2 ] 1 / 2 ,

Metrics