Abstract

In this Letter we report on the fabrication and testing of an extremely thin variable aperture stop based on the design of a single chamber adaptive membrane lens with integrated actuation. The aperture consists of a ring-shaped piezoelectric bending actuator with an elastic silicone membrane in the center. The formed cavity is filled with a nontransparent fluid and sealed with a glass platelet. In a voltage range up to 80V, an opening of the aperture of 4.55mm in diameter is obtained. The transmission in comparison to a standard mechanical aperture stop is maximum 6% lower.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, Opt. Lett. 33, 548 (2008).
    [CrossRef] [PubMed]
  2. P. Mueller, N. Spengler, H. Zappe, and W. Moench, J. Microelectromech. Syst. 19, 1477 (2010).
    [CrossRef]
  3. R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
    [CrossRef]
  4. C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, Microelectron. Eng. (2011, in press).
  5. C.-H. Kim, K.-D. Jung, and W. Kim, in Proceedings of IEEE International Conference on MEMS (IEEE, 2009), pp. 156.
  6. J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, in Proceedings of Optical MEMS and Nanophotonics (IEEE, 2010), pp. 15.
    [CrossRef]
  7. J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, in Proceedings of IEEE International Conference on MEMS (IEEE, 2011), pp. 692.

2010 (1)

P. Mueller, N. Spengler, H. Zappe, and W. Moench, J. Microelectromech. Syst. 19, 1477 (2010).
[CrossRef]

2008 (1)

2004 (1)

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

Burger, T.

J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, in Proceedings of Optical MEMS and Nanophotonics (IEEE, 2010), pp. 15.
[CrossRef]

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, in Proceedings of IEEE International Conference on MEMS (IEEE, 2011), pp. 692.

Doering, C.

C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, Microelectron. Eng. (2011, in press).

Draheim, J.

J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, in Proceedings of Optical MEMS and Nanophotonics (IEEE, 2010), pp. 15.
[CrossRef]

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, in Proceedings of IEEE International Conference on MEMS (IEEE, 2011), pp. 692.

Feiwen, L.

Fouckhardt, H.

C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, Microelectron. Eng. (2011, in press).

Guangya, Z.

Hongbin, Y.

Jung, K.-D.

C.-H. Kim, K.-D. Jung, and W. Kim, in Proceedings of IEEE International Conference on MEMS (IEEE, 2009), pp. 156.

Kamberger, R.

J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, in Proceedings of Optical MEMS and Nanophotonics (IEEE, 2010), pp. 15.
[CrossRef]

Kim, C.-H.

C.-H. Kim, K.-D. Jung, and W. Kim, in Proceedings of IEEE International Conference on MEMS (IEEE, 2009), pp. 156.

Kim, W.

C.-H. Kim, K.-D. Jung, and W. Kim, in Proceedings of IEEE International Conference on MEMS (IEEE, 2009), pp. 156.

Kimmle, C.

C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, Microelectron. Eng. (2011, in press).

Moench, W.

P. Mueller, N. Spengler, H. Zappe, and W. Moench, J. Microelectromech. Syst. 19, 1477 (2010).
[CrossRef]

Mueller, P.

P. Mueller, N. Spengler, H. Zappe, and W. Moench, J. Microelectromech. Syst. 19, 1477 (2010).
[CrossRef]

Schmittat, U.

C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, Microelectron. Eng. (2011, in press).

Schneider, F.

J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, in Proceedings of Optical MEMS and Nanophotonics (IEEE, 2010), pp. 15.
[CrossRef]

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, in Proceedings of IEEE International Conference on MEMS (IEEE, 2011), pp. 692.

Siong, C. F.

Spengler, N.

P. Mueller, N. Spengler, H. Zappe, and W. Moench, J. Microelectromech. Syst. 19, 1477 (2010).
[CrossRef]

Stagg, J.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

Syms, R. R. A.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

Veladi, H.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

Wallrabe, U.

J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, in Proceedings of Optical MEMS and Nanophotonics (IEEE, 2010), pp. 15.
[CrossRef]

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, in Proceedings of IEEE International Conference on MEMS (IEEE, 2011), pp. 692.

Zappe, H.

P. Mueller, N. Spengler, H. Zappe, and W. Moench, J. Microelectromech. Syst. 19, 1477 (2010).
[CrossRef]

Zou, H.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

J. Microelectromech. Syst. (1)

P. Mueller, N. Spengler, H. Zappe, and W. Moench, J. Microelectromech. Syst. 19, 1477 (2010).
[CrossRef]

J. Micromech. Microeng. (1)

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

Opt. Lett. (1)

Other (4)

C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, Microelectron. Eng. (2011, in press).

C.-H. Kim, K.-D. Jung, and W. Kim, in Proceedings of IEEE International Conference on MEMS (IEEE, 2009), pp. 156.

J. Draheim, F. Schneider, T. Burger, R. Kamberger, and U. Wallrabe, in Proceedings of Optical MEMS and Nanophotonics (IEEE, 2010), pp. 15.
[CrossRef]

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, in Proceedings of IEEE International Conference on MEMS (IEEE, 2011), pp. 692.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Design of the adaptive aperture stop in its actuated state.

Fig. 2
Fig. 2

Working principle of the variable aperture stop (a)  U = 0 V , undeflected membrane—close; (b)  U > 0 V deflected membrane—open.

Fig. 3
Fig. 3

Fabrication of the adaptive aperture stop. (a) PDMS casting, (b) demolding of the aperture, (c) filling and bonding of aperture and glass substrate, (d) final device.

Fig. 4
Fig. 4

(a), (b) Photographs of the final device. Images captured with the camera at (c) 20 V , (d) 35 V , and (e) 80 V .

Fig. 5
Fig. 5

Aperture diameter as a function of the applied voltage.

Fig. 6
Fig. 6

Relative transmission as a function of the aperture diameter of the variable aperture in comparison to a mechanical iris.

Fig. 7
Fig. 7

Slope as a function of the aperture diameter.

Fig. 8
Fig. 8

Aperture diameter and relative transmission as a function of the frequency at a voltage of 50 V .

Metrics