Abstract

We propose an optical spectrometer using a hybrid grating-Fresnel (G-Fresnel) diffractive optical element. Theoretical simulation shows that a spectral resolution of approximately 1nm can be potentially achieved with a millimeter-sized G-Fresnel. A proof-of-concept G-Fresnel-based spectrometer with subnanometer spectral resolution is experimentally demonstrated. The proposed method provides a promising new way for realizing compact optical spectrometers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corp., 2005).
  2. C. Hsieh, O. Momtahan, A. Karbaschi, and A. Adibi, Appl. Phys. B 91, 1 (2008).
    [CrossRef]
  3. K. Chaganti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, Opt. Express 14, 4064 (2006).
    [CrossRef] [PubMed]
  4. R. F. Wolffenbuttel, J. Micromech. Microeng. 15 (2005).
    [CrossRef]
  5. C. Yang, K. Shi, P. Edwards, and Z. Liu, Opt. Express 18, 23529 (2010).
    [CrossRef] [PubMed]
  6. K. Shi, “Supercontinuum imaging and spectroscopy,” Ph.D. dissertation (Pennsylvania State University, 2007).
  7. J. W. Goodman, Introduction to Fourier Optics (Roberts, 1996).
  8. J. A. Rogers and R. G. Nuzzo, Mater. Today 8, 50 (2005).
    [CrossRef]
  9. Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics—Fundamentals, Devices and Applications (McGraw-Hill, 2010).

2010 (1)

2008 (1)

C. Hsieh, O. Momtahan, A. Karbaschi, and A. Adibi, Appl. Phys. B 91, 1 (2008).
[CrossRef]

2006 (1)

2005 (2)

R. F. Wolffenbuttel, J. Micromech. Microeng. 15 (2005).
[CrossRef]

J. A. Rogers and R. G. Nuzzo, Mater. Today 8, 50 (2005).
[CrossRef]

Adibi, A.

C. Hsieh, O. Momtahan, A. Karbaschi, and A. Adibi, Appl. Phys. B 91, 1 (2008).
[CrossRef]

Auner, G. W.

Avrutsky, I.

Chaganti, K.

Edwards, P.

Fainman, Y.

Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics—Fundamentals, Devices and Applications (McGraw-Hill, 2010).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts, 1996).

Hsieh, C.

C. Hsieh, O. Momtahan, A. Karbaschi, and A. Adibi, Appl. Phys. B 91, 1 (2008).
[CrossRef]

Karbaschi, A.

C. Hsieh, O. Momtahan, A. Karbaschi, and A. Adibi, Appl. Phys. B 91, 1 (2008).
[CrossRef]

Lee, L. P.

Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics—Fundamentals, Devices and Applications (McGraw-Hill, 2010).

Liu, Z.

Loewen, E.

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corp., 2005).

Momtahan, O.

C. Hsieh, O. Momtahan, A. Karbaschi, and A. Adibi, Appl. Phys. B 91, 1 (2008).
[CrossRef]

Nuzzo, R. G.

J. A. Rogers and R. G. Nuzzo, Mater. Today 8, 50 (2005).
[CrossRef]

Palmer, C.

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corp., 2005).

Psaltis, D.

Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics—Fundamentals, Devices and Applications (McGraw-Hill, 2010).

Rogers, J. A.

J. A. Rogers and R. G. Nuzzo, Mater. Today 8, 50 (2005).
[CrossRef]

Salakhutdinov, I.

Shi, K.

C. Yang, K. Shi, P. Edwards, and Z. Liu, Opt. Express 18, 23529 (2010).
[CrossRef] [PubMed]

K. Shi, “Supercontinuum imaging and spectroscopy,” Ph.D. dissertation (Pennsylvania State University, 2007).

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, J. Micromech. Microeng. 15 (2005).
[CrossRef]

Yang, C.

C. Yang, K. Shi, P. Edwards, and Z. Liu, Opt. Express 18, 23529 (2010).
[CrossRef] [PubMed]

Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics—Fundamentals, Devices and Applications (McGraw-Hill, 2010).

Appl. Phys. B (1)

C. Hsieh, O. Momtahan, A. Karbaschi, and A. Adibi, Appl. Phys. B 91, 1 (2008).
[CrossRef]

J. Micromech. Microeng. (1)

R. F. Wolffenbuttel, J. Micromech. Microeng. 15 (2005).
[CrossRef]

Mater. Today (1)

J. A. Rogers and R. G. Nuzzo, Mater. Today 8, 50 (2005).
[CrossRef]

Opt. Express (2)

Other (4)

Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics—Fundamentals, Devices and Applications (McGraw-Hill, 2010).

K. Shi, “Supercontinuum imaging and spectroscopy,” Ph.D. dissertation (Pennsylvania State University, 2007).

J. W. Goodman, Introduction to Fourier Optics (Roberts, 1996).

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corp., 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Computer-generated surface profile (central part) of (a) a double-sided miniature G-Fresnel and (b) a single-sided miniature G-Fresnel.

Fig. 2
Fig. 2

(a) Schematic diagram illustrating the geometric configuration used in our simulation. (b) Calculated intensity distribution of the first-order diffraction patterns at three representative wavelengths (490, 500, and 510 nm ); locus of the foci can be fitted with a dotted line. (c) Calculated point spread functions at multiple wavelengths ( 496 504 nm ) on a tilted hypothetical detector with its position optimized to match with the experimental result shown in Fig. 3c.

Fig. 3
Fig. 3

(a) Schematic diagram of the G-Fresnel spectrometer. (b) Mounted G-Fresnel device. (c) Partial spectrum of an argon ion laser measured by the G-Fresnel spectrometer (blue curve) and a commercial optical spectrum analyzer (red curve). (d) Calibrated pixel–wavelength relation.

Fig. 4
Fig. 4

Measured transmission spectrum of (a) a laser-line filter and (b) a long-pass filter. Blue curves, measured by the G-Fresnel spectrometer; red curves, measured by a high-resolution commercial spectrograph.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T i ( x , y ) = e j 2 π λ ( n 1 ) h i ( x , y ) ( i = G     or     F ) ,
h F ( x , y ) = m λ 0 ( x 2 + y 2 + f 0 2 f 0 ) n 1 ( ( m 1 ) λ 0 x 2 + y 2 + f 0 2 f 0 < m λ 0 ) ,
U 0 ( x , y ) exp ( j k r ) r P ( x , y ) T ( x , y ) ,
r = ( 2 f 0 ) 2 + x 2 + y 2 ,
U 1 ( x , y , z ) 1 j λ Σ U 0 ( ξ , η ) exp ( j k r 01 ) r 01 cos θ d ξ d η ,
r = ( x ξ ) 2 + ( y η ) 2 + z 2 ,
cos θ = z / r 01 .

Metrics