Abstract

Laser Doppler velocimetry is used to measure very accurately the velocity and position of a microparticle propelled and guided by laser light in liquid-filled photonic crystal fiber. Periodic variations in particle velocity are observed that correlate closely with modal beating between the two lowest order guided fiber modes.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawata and T. Sugiura, Opt. Lett. 17, 772 (1992).
    [CrossRef] [PubMed]
  2. S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
    [CrossRef]
  3. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
    [CrossRef] [PubMed]
  4. P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, Opt. Lett. 33, 672 (2008).
    [CrossRef] [PubMed]
  5. T. G. Euser, M. K. Garbos, J. S. Y. Chen, and P. St. J. Russell, Opt. Lett. 34, 3674 (2009);
    [CrossRef] [PubMed]
  6. T. G. Euser, M. K. Garbos, J. S. Y. Chen and P. St. J. Russell, Opt. Lett. 35, 2142 (2010).
    [CrossRef]
  7. Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
    [CrossRef]
  8. F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, 1981), p. 85.
  9. E. A. J. Marcatili and R. A. Schmeltzer, Bell Labs Tech. J. 43, 1783 (1964).
  10. Assuming a D2O-filled cylindrical hollow dielectric waveguide with a 8.5 μm radius .
  11. A. Ashkin, Biophys. J. 61, 569 (1992).
    [CrossRef] [PubMed]
  12. H. Tözeren, J. Fluid Mech. 129, 77 (1983).
    [CrossRef]
  13. G. Magnus, Ann. Phys. Chem. 88, 1 (1853).
  14. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, Opt. Express 16, 17972 (2008).
    [CrossRef] [PubMed]
  15. O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, Opt. Express 18, 12622 (2010).
    [CrossRef] [PubMed]

2010 (2)

2009 (2)

T. G. Euser, M. K. Garbos, J. S. Y. Chen, and P. St. J. Russell, Opt. Lett. 34, 3674 (2009);
[CrossRef] [PubMed]

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

1992 (2)

1983 (1)

H. Tözeren, J. Fluid Mech. 129, 77 (1983).
[CrossRef]

1964 (2)

Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

E. A. J. Marcatili and R. A. Schmeltzer, Bell Labs Tech. J. 43, 1783 (1964).

1853 (1)

G. Magnus, Ann. Phys. Chem. 88, 1 (1853).

Abdolvand, A.

Abouraddy, A. F.

Ashkin, A.

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

Chen, J. S. Y.

Cummins, H. Z.

Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Durst, F.

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, 1981), p. 85.

Erickson, D.

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

Euser, T. G.

Fink, Y.

Garbos, M. K.

Hawkins, A. R.

Hu, Q.

Joannopoulos, J. D.

Kaminski, C. F.

Kawata, S.

Klug, M.

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

Kühn, S.

Lipson, M.

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

Lunt, E. J.

Magnus, G.

G. Magnus, Ann. Phys. Chem. 88, 1 (1853).

Mandal, S.

S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Labs Tech. J. 43, 1783 (1964).

Measor, P.

Melling, A.

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, 1981), p. 85.

Moore, S. D.

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

Nold, J.

Phillips, B. S.

Russell, P. St. J.

Scharrer, M.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Labs Tech. J. 43, 1783 (1964).

Schmidt, B. S.

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

Schmidt, H.

Shapira, O.

Shemuly, D.

Sugiura, T.

Tözeren, H.

H. Tözeren, J. Fluid Mech. 129, 77 (1983).
[CrossRef]

Whitelaw, J. H.

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, 1981), p. 85.

Whyte, G.

Yang, H. J.

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

Yeh, Y.

Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Ann. Phys. Chem. (1)

G. Magnus, Ann. Phys. Chem. 88, 1 (1853).

Appl. Phys. Lett. (2)

S. Mandal and D. Erickson, Appl. Phys. Lett. 90, 184103 (2007).
[CrossRef]

Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Bell Labs Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Labs Tech. J. 43, 1783 (1964).

Biophys. J. (1)

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

J. Fluid Mech. (1)

H. Tözeren, J. Fluid Mech. 129, 77 (1983).
[CrossRef]

Nature (1)

H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Other (2)

Assuming a D2O-filled cylindrical hollow dielectric waveguide with a 8.5 μm radius .

F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, 1981), p. 85.

Supplementary Material (2)

» Media 1: MP3 (8295 KB)     
» Media 2: MP3 (1477 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scanning electron micrograph of the PCF microstructure (left), measured mode intensity profile in the 17 μm diameter core (right). (b) Schematic of the setup: BS, beam splitter; PD, photodiode. (c) Intensity beating detected by PD for a particle with R = 3.25 μm , moving at V p = 240 μm / s . One period corresponds to a particle displacement of 400 nm .

Fig. 2
Fig. 2

(a) Photodiode signal. (b) Temporal evolution of the FFT of the signal in (a) using a 100 ms window and 50 ms scanning steps. (c) Particle velocity extracted from (b) (solid curve); video velocity measurement (red dotted curve). (d) Particle position z extracted from the Doppler measurement z D (solid curve) and video data z V (red dotted curve), positional error z V z D . (dashed curve, right-hand axis).

Fig. 3
Fig. 3

(a) Particle velocity (top curve) and averaged photodiode signal (bottom curve). Borosilicate sphere, R = 3.25 μm , launched optical power 270 mW (Media 1). (b) Calculated intensity profiles of LP 01 and LP 11 modes (left) in the D 2 O -filled, 17 μm diameter core. I–IV, superposition of 90% LP 01 mode and 10% LP 11 mode at four positions within one beat period. (c) Measured (circles) and calculated (curve) particle velocity versus relative displacement (relative to 11.5 mm ).

Fig. 4
Fig. 4

Stop–start velocity measurements, R = 3.25 μm , P opt = 230 mW (Media 2). (a) Doppler spectrum. (b) Velocity measurement. In regions A, the beam was blocked and the particle lies on the lower core wall (see inset). In regions B, the beam was switched on and the particle slowly moved back to the central position. Exponential fits to the data have time constants of 0.60 and 0.61 s . In region C, the particle is moving close to the center of the core.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V p = F opt / 6 π η R K 1 ,

Metrics