Abstract

A diffractive optical element for off-axis focusing of terahertz radiation is presented. It was designed in a nonparaxial regime and manufactured in a metal slab by laser cutting of curved stripes. The optical function of the structure includes focusing and deflecting the illuminating beam of a chosen frequency in a particular place. Therefore, the element acts as both a spatial and a spectral filter; hence it is especially suitable for separating the terahertz signal from a broadband thermal load in passive detection devices. The experimental evaluation of the proposed diffractive lens by means of time-domain spectroscopy is presented and discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Richter, A. Hofmann, and L.-P. Schmidt, Proceedings of the 31st European Microwave Conference, London, England (IEEE, 2001).
  2. Y. H. Lo and R. Leonhardt, Opt. Express 16, 15991 (2008).
    [CrossRef] [PubMed]
  3. Y. Liu, H. Shi, J. Ma, D. Gan, J. Cui, C. Du, and X. Luo, Appl. Phys. B 92, 623 (2008)..
    [CrossRef]
  4. E. D. Walsby, J. Alton, C. Worrall, H. E. Beere, D. A. Ritchie, and D. R. S. Cumming, Opt. Lett. 32, 1141 (2007).
    [CrossRef] [PubMed]
  5. O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, Appl. Phys. Lett. 96, 241110 (2010).
    [CrossRef]
  6. P. Galarneau, R. A. Lessard, and L. Song, J. Mod. Opt. 37, 1319 (1990).
    [CrossRef]
  7. M. Sypek, Opt. Commun. 116, 43 (1995).
    [CrossRef]
  8. M. Sypek, C. Prokopowicz, and M. Górecki, Opt. Eng. 42, 3158 (2003).
    [CrossRef]
  9. S. Wang, F. Garet, K. Blary, E. Lheurette, J.-L. Coutaz, and D. Lippens, Appl. Phys. Lett. 97, 181902 (2010).
    [CrossRef]
  10. A. I. Khizhnyak, S. P. Anokhov, R. A. Lymarenko, M. S. Soskin, and M. V. Vasnetsov, J. Opt. Soc. Am. A 17, 2199 (2000).
    [CrossRef]

2010 (2)

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, Appl. Phys. Lett. 96, 241110 (2010).
[CrossRef]

S. Wang, F. Garet, K. Blary, E. Lheurette, J.-L. Coutaz, and D. Lippens, Appl. Phys. Lett. 97, 181902 (2010).
[CrossRef]

2008 (2)

Y. Liu, H. Shi, J. Ma, D. Gan, J. Cui, C. Du, and X. Luo, Appl. Phys. B 92, 623 (2008)..
[CrossRef]

Y. H. Lo and R. Leonhardt, Opt. Express 16, 15991 (2008).
[CrossRef] [PubMed]

2007 (1)

2003 (1)

M. Sypek, C. Prokopowicz, and M. Górecki, Opt. Eng. 42, 3158 (2003).
[CrossRef]

2000 (1)

1995 (1)

M. Sypek, Opt. Commun. 116, 43 (1995).
[CrossRef]

1990 (1)

P. Galarneau, R. A. Lessard, and L. Song, J. Mod. Opt. 37, 1319 (1990).
[CrossRef]

Alton, J.

Anokhov, S. P.

Beere, H. E.

Beigang, R.

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, Appl. Phys. Lett. 96, 241110 (2010).
[CrossRef]

Blary, K.

S. Wang, F. Garet, K. Blary, E. Lheurette, J.-L. Coutaz, and D. Lippens, Appl. Phys. Lett. 97, 181902 (2010).
[CrossRef]

Coutaz, J.-L.

S. Wang, F. Garet, K. Blary, E. Lheurette, J.-L. Coutaz, and D. Lippens, Appl. Phys. Lett. 97, 181902 (2010).
[CrossRef]

Cui, J.

Y. Liu, H. Shi, J. Ma, D. Gan, J. Cui, C. Du, and X. Luo, Appl. Phys. B 92, 623 (2008)..
[CrossRef]

Cumming, D. R. S.

Du, C.

Y. Liu, H. Shi, J. Ma, D. Gan, J. Cui, C. Du, and X. Luo, Appl. Phys. B 92, 623 (2008)..
[CrossRef]

Galarneau, P.

P. Galarneau, R. A. Lessard, and L. Song, J. Mod. Opt. 37, 1319 (1990).
[CrossRef]

Gan, D.

Y. Liu, H. Shi, J. Ma, D. Gan, J. Cui, C. Du, and X. Luo, Appl. Phys. B 92, 623 (2008)..
[CrossRef]

Garet, F.

S. Wang, F. Garet, K. Blary, E. Lheurette, J.-L. Coutaz, and D. Lippens, Appl. Phys. Lett. 97, 181902 (2010).
[CrossRef]

Górecki, M.

M. Sypek, C. Prokopowicz, and M. Górecki, Opt. Eng. 42, 3158 (2003).
[CrossRef]

Hofmann, A.

J. Richter, A. Hofmann, and L.-P. Schmidt, Proceedings of the 31st European Microwave Conference, London, England (IEEE, 2001).

Khizhnyak, A. I.

Krolla, B.

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, Appl. Phys. Lett. 96, 241110 (2010).
[CrossRef]

Leonhardt, R.

Lessard, R. A.

P. Galarneau, R. A. Lessard, and L. Song, J. Mod. Opt. 37, 1319 (1990).
[CrossRef]

Lheurette, E.

S. Wang, F. Garet, K. Blary, E. Lheurette, J.-L. Coutaz, and D. Lippens, Appl. Phys. Lett. 97, 181902 (2010).
[CrossRef]

Lippens, D.

S. Wang, F. Garet, K. Blary, E. Lheurette, J.-L. Coutaz, and D. Lippens, Appl. Phys. Lett. 97, 181902 (2010).
[CrossRef]

Liu, Y.

Y. Liu, H. Shi, J. Ma, D. Gan, J. Cui, C. Du, and X. Luo, Appl. Phys. B 92, 623 (2008)..
[CrossRef]

Lo, Y. H.

Luo, X.

Y. Liu, H. Shi, J. Ma, D. Gan, J. Cui, C. Du, and X. Luo, Appl. Phys. B 92, 623 (2008)..
[CrossRef]

Lymarenko, R. A.

Ma, J.

Y. Liu, H. Shi, J. Ma, D. Gan, J. Cui, C. Du, and X. Luo, Appl. Phys. B 92, 623 (2008)..
[CrossRef]

Paul, O.

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, Appl. Phys. Lett. 96, 241110 (2010).
[CrossRef]

Prokopowicz, C.

M. Sypek, C. Prokopowicz, and M. Górecki, Opt. Eng. 42, 3158 (2003).
[CrossRef]

Rahm, M.

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, Appl. Phys. Lett. 96, 241110 (2010).
[CrossRef]

Reinhard, B.

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, Appl. Phys. Lett. 96, 241110 (2010).
[CrossRef]

Richter, J.

J. Richter, A. Hofmann, and L.-P. Schmidt, Proceedings of the 31st European Microwave Conference, London, England (IEEE, 2001).

Ritchie, D. A.

Schmidt, L.-P.

J. Richter, A. Hofmann, and L.-P. Schmidt, Proceedings of the 31st European Microwave Conference, London, England (IEEE, 2001).

Shi, H.

Y. Liu, H. Shi, J. Ma, D. Gan, J. Cui, C. Du, and X. Luo, Appl. Phys. B 92, 623 (2008)..
[CrossRef]

Song, L.

P. Galarneau, R. A. Lessard, and L. Song, J. Mod. Opt. 37, 1319 (1990).
[CrossRef]

Soskin, M. S.

Sypek, M.

M. Sypek, C. Prokopowicz, and M. Górecki, Opt. Eng. 42, 3158 (2003).
[CrossRef]

M. Sypek, Opt. Commun. 116, 43 (1995).
[CrossRef]

Vasnetsov, M. V.

Walsby, E. D.

Wang, S.

S. Wang, F. Garet, K. Blary, E. Lheurette, J.-L. Coutaz, and D. Lippens, Appl. Phys. Lett. 97, 181902 (2010).
[CrossRef]

Worrall, C.

Appl. Phys. B (1)

Y. Liu, H. Shi, J. Ma, D. Gan, J. Cui, C. Du, and X. Luo, Appl. Phys. B 92, 623 (2008)..
[CrossRef]

Appl. Phys. Lett. (2)

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, Appl. Phys. Lett. 96, 241110 (2010).
[CrossRef]

S. Wang, F. Garet, K. Blary, E. Lheurette, J.-L. Coutaz, and D. Lippens, Appl. Phys. Lett. 97, 181902 (2010).
[CrossRef]

J. Mod. Opt. (1)

P. Galarneau, R. A. Lessard, and L. Song, J. Mod. Opt. 37, 1319 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

M. Sypek, Opt. Commun. 116, 43 (1995).
[CrossRef]

Opt. Eng. (1)

M. Sypek, C. Prokopowicz, and M. Górecki, Opt. Eng. 42, 3158 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

J. Richter, A. Hofmann, and L.-P. Schmidt, Proceedings of the 31st European Microwave Conference, London, England (IEEE, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Top, photograph and drawing of the metallic diffractive structure made in a 0.8 - mm -thick stainless steel slab ( 5 × 5 cm 2 of X5CrNi18-10). Bottom, ideal scheme of the designed structure’s function: bending and focusing on the detector (D).

Fig. 2
Fig. 2

Scheme of the terahertz goniometer setup. The thick dashed line represents the diffractive lens. B is the razor blade used to measure the Gaussian parameters of the focused beam. Inset, arrangement to illuminate the detector with a planar wave.

Fig. 3
Fig. 3

Terahertz signal amplitude at different frequencies given in the figure versus the deflection angle θ. The data corresponding to the strongest focusing effect at f = 0.5 THz are marked with solid circles. The continuous line for the 0.41 THz signal is a Gaussian fit of the nondeflected beam.

Fig. 4
Fig. 4

Radius of the focused terahertz beam versus the distance z from the device at f = 0.5 THz . The continuous line is a fit for a Gaussian beam with Z R = 12.92 mm and w o = 2.05 mm . Inset, signal recorded at f = 0.5 THz versus the position x of a blade located at z = 86.7 mm perpendicularly to the beam axis. The continuous line is a complementary error-function with the beam radius as adjustable parameter.

Fig. 5
Fig. 5

Contour maps of the terahertz beam amplitude at f = 0.5 THz . (a) Calculated (theoretical modeling), (b) extrapolated from the measurement of the beam parameters, assuming the beam shape is Gaussian. On the map (b), the straight lines indicate the distance z from the center of the device, which lies in ( x , z ) = ( 0 , 0 ) . The axes labels are given in millimeters. The maximum field amplitude is normalized to 1, and the gray scale specifies different amplitude levels.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T 1 ( x , y ) = e i k 2 F 1 ( x 2 + y 2 ) .
T 2 ( x , y ) = e i k · x 2 + ( y + d ) 2 + F 2 2 ,

Metrics