Abstract

We demonstrate a widely tunable laser heterodyne radiometer operating in the thermal IR during an atmospheric observation campaign in the solar occultation viewing mode. An external cavity quantum cascade laser tunable within a range of 1120 to 1238cm1 is used as the local oscillator (LO) of the instrument. Ultra-high-resolution (60MHz or 0.002cm1) transmission spectroscopy of several atmospheric species (water vapor, ozone, nitrous oxide, methane, and dichlorodifluoromethane) has been demonstrated within four precisely selected molecule-specific narrow spectral windows (1cm1). Atmospheric transmission lines within each selected window were fully resolved through mode-hop-free continuous tuning of the LO frequency. Comparison measurements were made simultaneously with a high-resolution Fourier transform spectrometer to demonstrate the advantages of the laser heterodyne system for atmospheric sounding at high spectral and spatial resolutions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Menzies, in Laser Monitoring of the Atmosphere, E.D.Hinkley, ed. (Springer, 1976), Chap. 7.
  2. W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, Geophys. Res. Lett. 21, 1347 (1994).
    [CrossRef]
  3. D. Weidmann, W. J. Reburn, and K. M. Smith, Appl. Opt. 46, 7162 (2007).
    [CrossRef] [PubMed]
  4. G. Wysocki, Appl. Phys. B 92, 305 (2008).
    [CrossRef]
  5. F. Capasso, Opt. Eng. 49, 111102 (2010).
    [CrossRef]
  6. D. Weidmann and G. Wysocki, Opt. Express 17, 248 (2009).
    [CrossRef] [PubMed]
  7. A. Dudhia, “Reference Forward Model software user’s manual,” www.atm.ox.ac.uk/RFM/sum.
  8. D. L. Fried, Proc. IEEE 55, 57 (1967).
    [CrossRef]

2010

F. Capasso, Opt. Eng. 49, 111102 (2010).
[CrossRef]

2009

2008

G. Wysocki, Appl. Phys. B 92, 305 (2008).
[CrossRef]

2007

1994

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, Geophys. Res. Lett. 21, 1347 (1994).
[CrossRef]

1967

D. L. Fried, Proc. IEEE 55, 57 (1967).
[CrossRef]

Bell, W.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, Geophys. Res. Lett. 21, 1347 (1994).
[CrossRef]

Capasso, F.

F. Capasso, Opt. Eng. 49, 111102 (2010).
[CrossRef]

Dudhia, A.

A. Dudhia, “Reference Forward Model software user’s manual,” www.atm.ox.ac.uk/RFM/sum.

Fogal, P. F.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, Geophys. Res. Lett. 21, 1347 (1994).
[CrossRef]

Fried, D. L.

D. L. Fried, Proc. IEEE 55, 57 (1967).
[CrossRef]

Gardiner, T. D.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, Geophys. Res. Lett. 21, 1347 (1994).
[CrossRef]

Martin, N. A.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, Geophys. Res. Lett. 21, 1347 (1994).
[CrossRef]

Menzies, R. T.

R. T. Menzies, in Laser Monitoring of the Atmosphere, E.D.Hinkley, ed. (Springer, 1976), Chap. 7.

Reburn, W. J.

Smith, K. M.

Swann, N. R.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, Geophys. Res. Lett. 21, 1347 (1994).
[CrossRef]

Waters, J. W.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, Geophys. Res. Lett. 21, 1347 (1994).
[CrossRef]

Weidmann, D.

Woods, P. T.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, Geophys. Res. Lett. 21, 1347 (1994).
[CrossRef]

Wysocki, G.

Appl. Opt.

Appl. Phys. B

G. Wysocki, Appl. Phys. B 92, 305 (2008).
[CrossRef]

Geophys. Res. Lett.

W. Bell, N. A. Martin, T. D. Gardiner, N. R. Swann, P. T. Woods, P. F. Fogal, and J. W. Waters, Geophys. Res. Lett. 21, 1347 (1994).
[CrossRef]

Opt. Eng.

F. Capasso, Opt. Eng. 49, 111102 (2010).
[CrossRef]

Opt. Express

Proc. IEEE

D. L. Fried, Proc. IEEE 55, 57 (1967).
[CrossRef]

Other

R. T. Menzies, in Laser Monitoring of the Atmosphere, E.D.Hinkley, ed. (Springer, 1976), Chap. 7.

A. Dudhia, “Reference Forward Model software user’s manual,” www.atm.ox.ac.uk/RFM/sum.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical layout of the EC-QC-LHR: M, mirror; BS, beam splitter; D1, solar intensity detector; D2, mid-IR detector; OAEM, off-axis elliptical mirror; OAPM, off-axis parabolic mirror; PM, photomixer.

Fig. 2
Fig. 2

Synthetic atmospheric transmission spectra of the significant absorbers present within the EC-QC-LHR tuning range. Vertical lines indicate the narrow, molecule-specific, spectral windows selected.

Fig. 3
Fig. 3

Raw heterodyne atmospheric spectra corresponding to the four spectral narrow windows shown in Fig. 2. The upper panel of each spectrum shows calculated zenithal spectra for line identification. For clarity, weakly contributing molecules have been omitted in the calculation (e.g., in spectrum 3, small features over the H 2 O and N 2 O lines are ozone absorption lines).

Fig. 4
Fig. 4

Subset of atmospheric FTS spectra recorded in various conditions of resolution and scan averaging. Inset shows the EC-QC-LHR spectrum 2 from Fig. 3.

Tables (1)

Tables Icon

Table 1 Experimental Parameters for the Spectra Shown in Fig. 3

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ = η · Δ · B · τ exp ( h · ν k · T ) 1 · 1 SNR m ,

Metrics