Abstract

We designed, fabricated, and characterized varifocal microlenses, whose focal length varies along with the deformation of a transparent elastomer membrane under hydraulic pressure tailored by electroactive polymer actuators. The microfluidic channel of the microlens was designed to be embedded between silicon and glass so that transient fluctuation of the optical fluid and elastomer membrane is effectively suppressed, and thus the microlens is optically stabilized in a reduced time. Multilayered poly(vinylidene fluoride-trifluoroethylene-clorotrifluoroethylene) actuators were also developed and integrated onto the microfluidic chambers. We demonstrated that the developed microlenses are suitable for use in microimaging systems to make their foci tunable.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses

Seung Tae Choi, Byeong Soo Son, Gye Won Seo, Si-Young Park, and Kyung-Sick Lee
Opt. Express 22(5) 6133-6146 (2014)

Tunable liquid-filled microlens array integrated with microfluidic network

Nikolas Chronis, Gang L. Liu, Ki-Hun Jeong, and Luke P. Lee
Opt. Express 11(19) 2370-2378 (2003)

Dielectric elastomer stack actuator-based autofocus fluid lens

Pejman Rasti, Henry Hous, Helmut F. Schlaak, Rudolf Kiefer, and Gholamreza Anbarjafari
Appl. Opt. 54(33) 9976-9980 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

» Media 1: AVI (10617 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription