Abstract

We designed, fabricated, and characterized varifocal microlenses, whose focal length varies along with the deformation of a transparent elastomer membrane under hydraulic pressure tailored by electroactive polymer actuators. The microfluidic channel of the microlens was designed to be embedded between silicon and glass so that transient fluctuation of the optical fluid and elastomer membrane is effectively suppressed, and thus the microlens is optically stabilized in a reduced time. Multilayered poly(vinylidene fluoride-trifluoroethylene-clorotrifluoroethylene) actuators were also developed and integrated onto the microfluidic chambers. We demonstrated that the developed microlenses are suitable for use in microimaging systems to make their foci tunable.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
    [CrossRef]
  2. K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, Opt. Express 12, 2494 (2004).
    [CrossRef] [PubMed]
  3. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, Opt. Express 14, 8031 (2006).
    [CrossRef] [PubMed]
  4. W. Wang and J. Fang, J. Micromech. Microeng. 16, 1221 (2006).
    [CrossRef]
  5. S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
    [CrossRef]
  6. Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality, Potential and Challenges (SPIE, 2004), Vol.  PM136.
    [CrossRef]
  7. F. Xia, Z. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdel-Sadek, and K. D. Belfield, Adv. Mater. 14, 1574 (2002).
    [CrossRef]
  8. F. Bauer, E. Fousson, and Q. M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 13, 1149 (2006).
  9. F. Xia, S. Tadigadapa, and Q. M. Zhang, Sens. Actuators A Phys. 125, 346 (2006).
    [CrossRef]
  10. URL: http://www.piezotech.fr/.
  11. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1959), pp. 404–408.

2007 (1)

S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

2006 (4)

F. Bauer, E. Fousson, and Q. M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 13, 1149 (2006).

F. Xia, S. Tadigadapa, and Q. M. Zhang, Sens. Actuators A Phys. 125, 346 (2006).
[CrossRef]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, Opt. Express 14, 8031 (2006).
[CrossRef] [PubMed]

W. Wang and J. Fang, J. Micromech. Microeng. 16, 1221 (2006).
[CrossRef]

2004 (1)

2002 (1)

F. Xia, Z. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdel-Sadek, and K. D. Belfield, Adv. Mater. 14, 1574 (2002).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Abdel-Sadek, G.

F. Xia, Z. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdel-Sadek, and K. D. Belfield, Adv. Mater. 14, 1574 (2002).
[CrossRef]

Anderson, P. A.

Bar-Cohen, Y.

Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality, Potential and Challenges (SPIE, 2004), Vol.  PM136.
[CrossRef]

Bauer, F.

F. Bauer, E. Fousson, and Q. M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 13, 1149 (2006).

Belfield, K. D.

F. Xia, Z. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdel-Sadek, and K. D. Belfield, Adv. Mater. 14, 1574 (2002).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Cheng, Z.

F. Xia, Z. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdel-Sadek, and K. D. Belfield, Adv. Mater. 14, 1574 (2002).
[CrossRef]

Chronis, N.

Fang, J.

W. Wang and J. Fang, J. Micromech. Microeng. 16, 1221 (2006).
[CrossRef]

Fousson, E.

F. Bauer, E. Fousson, and Q. M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 13, 1149 (2006).

Fox, D.

Jeong, K.-H.

Kavarnos, G. J.

F. Xia, Z. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdel-Sadek, and K. D. Belfield, Adv. Mater. 14, 1574 (2002).
[CrossRef]

Lee, L. P.

Lee, S. S.

S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Lee, S. W.

S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Li, H.

F. Xia, Z. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdel-Sadek, and K. D. Belfield, Adv. Mater. 14, 1574 (2002).
[CrossRef]

Liu, G. L.

Peseux, J.

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Ren, H.

Tadigadapa, S.

F. Xia, S. Tadigadapa, and Q. M. Zhang, Sens. Actuators A Phys. 125, 346 (2006).
[CrossRef]

Timoshenko, S. P.

S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1959), pp. 404–408.

Ting, R. Y.

F. Xia, Z. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdel-Sadek, and K. D. Belfield, Adv. Mater. 14, 1574 (2002).
[CrossRef]

Wang, W.

W. Wang and J. Fang, J. Micromech. Microeng. 16, 1221 (2006).
[CrossRef]

Woinowsky-Krieger, S.

S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1959), pp. 404–408.

Wu, B.

Wu, S.-T.

Xia, F.

F. Xia, S. Tadigadapa, and Q. M. Zhang, Sens. Actuators A Phys. 125, 346 (2006).
[CrossRef]

F. Xia, Z. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdel-Sadek, and K. D. Belfield, Adv. Mater. 14, 1574 (2002).
[CrossRef]

Xu, H.

F. Xia, Z. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdel-Sadek, and K. D. Belfield, Adv. Mater. 14, 1574 (2002).
[CrossRef]

Zhang, Q.

F. Xia, Z. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdel-Sadek, and K. D. Belfield, Adv. Mater. 14, 1574 (2002).
[CrossRef]

Zhang, Q. M.

F. Bauer, E. Fousson, and Q. M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 13, 1149 (2006).

F. Xia, S. Tadigadapa, and Q. M. Zhang, Sens. Actuators A Phys. 125, 346 (2006).
[CrossRef]

Adv. Mater. (1)

F. Xia, Z. Cheng, H. Xu, H. Li, Q. Zhang, G. J. Kavarnos, R. Y. Ting, G. Abdel-Sadek, and K. D. Belfield, Adv. Mater. 14, 1574 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

IEEE Trans. Dielectr. Electr. Insul. (1)

F. Bauer, E. Fousson, and Q. M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 13, 1149 (2006).

J. Micromech. Microeng. (1)

W. Wang and J. Fang, J. Micromech. Microeng. 16, 1221 (2006).
[CrossRef]

Opt. Express (2)

Sens. Actuators A Phys. (1)

F. Xia, S. Tadigadapa, and Q. M. Zhang, Sens. Actuators A Phys. 125, 346 (2006).
[CrossRef]

Other (3)

URL: http://www.piezotech.fr/.

S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1959), pp. 404–408.

Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality, Potential and Challenges (SPIE, 2004), Vol.  PM136.
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (10617 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic design of a varifocal microlens suitable for wafer-scale microfabrication. The focal length of the liquid-filled microlens varies according to the deformation of the transparent elastomer membrane under hydraulic pressure tailored by an EAP actuator.

Fig. 2
Fig. 2

Array of varifocal microlenses with multilayered P(VDF-TrFE-CTFE) actuators fabricated on a 4 in. wafer. (a) Top-side view and (b) bottom-side view.

Fig. 3
Fig. 3

Displacement responses of four polymer actuators and a microlens under an applied voltage, where the displacement signifies the maximum deflection of the polymer actuator chambers or microlens.

Fig. 4
Fig. 4

Single-frame excerpts from a video recording of the operation of a varifocal microlens developed in this study together with a commercial fixed-focus five megapixel phone camera (Media 1). (a) Captured image when the microlens is focused on the left optical chart at a distance of 10 cm in front of the microlens and (b) captured image when the microlens is focused at infinity.

Metrics