Abstract

Linear polarization intrinsic optical signal (LP-IOS) measurement can provide sensitive detection of neural activities in stimulus-activated neural tissues. However, the LP-IOS magnitude and signal-to-noise ratio (SNR) are highly correlated with the nerve orientation relative to the polarization plane of the incident light. Because of the complexity of orientation dependency, LP-IOS optimization and outcome interpretation are time consuming and complicated. In this study, we demonstrate the feasibility of circular polarization intrinsic optical signal (CP-IOS) measurement. Our theoretical modeling and experimental investigation indicate that CP-IOS magnitude and SNR are independent from the nerve orientation. Therefore, CP-IOS promises a practical method for polarization IOS imaging of complex neural systems.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Cohen, R. D. Keynes, and B. Hille, Nature 218, 438 (1968).
    [CrossRef] [PubMed]
  2. I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, Proc. Natl. Acad. Sci. USA 61, 883 (1968).
    [CrossRef] [PubMed]
  3. D. Landowne, Jpn. J. Physiol. 43, S7 (1993).
    [PubMed]
  4. K. M. Carter, J. S. George, and D. M. Rector, J. Neurosci. Methods 135, 9 (2004).
    [CrossRef] [PubMed]
  5. J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, NeuroImage 40, 1034 (2008).
    [CrossRef] [PubMed]
  6. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, J. Biomed. Opt. 15, 041513 (2010).
    [CrossRef] [PubMed]
  7. Y. C. Li, C. Strang, F. R. Amthor, L. Liu, Y. G. Li, Q. X. Zhang, K. Keyser, and X. C. Yao, Opt. Lett. 35, 1810 (2010).
    [CrossRef] [PubMed]
  8. X. C. Yao and J. S. George, NeuroImage 33, 898 (2006).
    [CrossRef] [PubMed]
  9. X. C. Yao and Y. B. Zhao, Opt. Express 16, 12446 (2008).
    [CrossRef] [PubMed]
  10. X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, Biophys. J. 88, 4170 (2005).
    [CrossRef] [PubMed]
  11. I. Tasaki and P. M. Byrne, Jpn. J. Physiol. 43, S67 (1993).
    [CrossRef] [PubMed]
  12. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
    [CrossRef]
  13. A. J. Foust, R. M. Beiu, and D. M. Rector, Appl. Opt. 44, 2008 (2005).
    [CrossRef] [PubMed]
  14. L. B. Cohen, B. Hille, and R. D. Keynes, J. Physiol. 211, 495 (1970).
    [PubMed]
  15. K. Furusawa, J. Physiol. 67, 325 (1929).
    [PubMed]

2010 (2)

2008 (2)

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, NeuroImage 40, 1034 (2008).
[CrossRef] [PubMed]

X. C. Yao and Y. B. Zhao, Opt. Express 16, 12446 (2008).
[CrossRef] [PubMed]

2006 (1)

X. C. Yao and J. S. George, NeuroImage 33, 898 (2006).
[CrossRef] [PubMed]

2005 (2)

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, Biophys. J. 88, 4170 (2005).
[CrossRef] [PubMed]

A. J. Foust, R. M. Beiu, and D. M. Rector, Appl. Opt. 44, 2008 (2005).
[CrossRef] [PubMed]

2004 (1)

K. M. Carter, J. S. George, and D. M. Rector, J. Neurosci. Methods 135, 9 (2004).
[CrossRef] [PubMed]

1993 (2)

D. Landowne, Jpn. J. Physiol. 43, S7 (1993).
[PubMed]

I. Tasaki and P. M. Byrne, Jpn. J. Physiol. 43, S67 (1993).
[CrossRef] [PubMed]

1970 (1)

L. B. Cohen, B. Hille, and R. D. Keynes, J. Physiol. 211, 495 (1970).
[PubMed]

1968 (2)

L. B. Cohen, R. D. Keynes, and B. Hille, Nature 218, 438 (1968).
[CrossRef] [PubMed]

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, Proc. Natl. Acad. Sci. USA 61, 883 (1968).
[CrossRef] [PubMed]

1941 (1)

1929 (1)

K. Furusawa, J. Physiol. 67, 325 (1929).
[PubMed]

Amthor, F. R.

Barrowes, B.

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, Biophys. J. 88, 4170 (2005).
[CrossRef] [PubMed]

Beiu, R. M.

Byrne, P. M.

I. Tasaki and P. M. Byrne, Jpn. J. Physiol. 43, S67 (1993).
[CrossRef] [PubMed]

Carnay, L.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, Proc. Natl. Acad. Sci. USA 61, 883 (1968).
[CrossRef] [PubMed]

Carter, K. M.

K. M. Carter, J. S. George, and D. M. Rector, J. Neurosci. Methods 135, 9 (2004).
[CrossRef] [PubMed]

Cohen, L. B.

L. B. Cohen, B. Hille, and R. D. Keynes, J. Physiol. 211, 495 (1970).
[PubMed]

L. B. Cohen, R. D. Keynes, and B. Hille, Nature 218, 438 (1968).
[CrossRef] [PubMed]

Foust, A.

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, Biophys. J. 88, 4170 (2005).
[CrossRef] [PubMed]

Foust, A. J.

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, NeuroImage 40, 1034 (2008).
[CrossRef] [PubMed]

A. J. Foust, R. M. Beiu, and D. M. Rector, Appl. Opt. 44, 2008 (2005).
[CrossRef] [PubMed]

Furusawa, K.

K. Furusawa, J. Physiol. 67, 325 (1929).
[PubMed]

George, J. S.

X. C. Yao and J. S. George, NeuroImage 33, 898 (2006).
[CrossRef] [PubMed]

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, Biophys. J. 88, 4170 (2005).
[CrossRef] [PubMed]

K. M. Carter, J. S. George, and D. M. Rector, J. Neurosci. Methods 135, 9 (2004).
[CrossRef] [PubMed]

Hille, B.

L. B. Cohen, B. Hille, and R. D. Keynes, J. Physiol. 211, 495 (1970).
[PubMed]

L. B. Cohen, R. D. Keynes, and B. Hille, Nature 218, 438 (1968).
[CrossRef] [PubMed]

Jones, R. C.

Keynes, R. D.

L. B. Cohen, B. Hille, and R. D. Keynes, J. Physiol. 211, 495 (1970).
[PubMed]

L. B. Cohen, R. D. Keynes, and B. Hille, Nature 218, 438 (1968).
[CrossRef] [PubMed]

Keyser, K.

Kolbitsch, C.

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, J. Biomed. Opt. 15, 041513 (2010).
[CrossRef] [PubMed]

Landowne, D.

D. Landowne, Jpn. J. Physiol. 43, S7 (1993).
[PubMed]

Leitgeb, R. A.

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, J. Biomed. Opt. 15, 041513 (2010).
[CrossRef] [PubMed]

Li, Y. C.

Li, Y. G.

Liu, L.

McCluskey, M. D.

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, NeuroImage 40, 1034 (2008).
[CrossRef] [PubMed]

Rector, D. M.

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, NeuroImage 40, 1034 (2008).
[CrossRef] [PubMed]

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, Biophys. J. 88, 4170 (2005).
[CrossRef] [PubMed]

A. J. Foust, R. M. Beiu, and D. M. Rector, Appl. Opt. 44, 2008 (2005).
[CrossRef] [PubMed]

K. M. Carter, J. S. George, and D. M. Rector, J. Neurosci. Methods 135, 9 (2004).
[CrossRef] [PubMed]

Sandlin, R.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, Proc. Natl. Acad. Sci. USA 61, 883 (1968).
[CrossRef] [PubMed]

Schei, J. L.

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, NeuroImage 40, 1034 (2008).
[CrossRef] [PubMed]

Schmoll, T.

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, J. Biomed. Opt. 15, 041513 (2010).
[CrossRef] [PubMed]

Strang, C.

Tasaki, I.

I. Tasaki and P. M. Byrne, Jpn. J. Physiol. 43, S67 (1993).
[CrossRef] [PubMed]

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, Proc. Natl. Acad. Sci. USA 61, 883 (1968).
[CrossRef] [PubMed]

Watanabe, A.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, Proc. Natl. Acad. Sci. USA 61, 883 (1968).
[CrossRef] [PubMed]

Yao, X. C.

Y. C. Li, C. Strang, F. R. Amthor, L. Liu, Y. G. Li, Q. X. Zhang, K. Keyser, and X. C. Yao, Opt. Lett. 35, 1810 (2010).
[CrossRef] [PubMed]

X. C. Yao and Y. B. Zhao, Opt. Express 16, 12446 (2008).
[CrossRef] [PubMed]

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, NeuroImage 40, 1034 (2008).
[CrossRef] [PubMed]

X. C. Yao and J. S. George, NeuroImage 33, 898 (2006).
[CrossRef] [PubMed]

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, Biophys. J. 88, 4170 (2005).
[CrossRef] [PubMed]

Zhang, Q. X.

Zhao, Y. B.

Appl. Opt. (1)

Biophys. J. (1)

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, Biophys. J. 88, 4170 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, J. Biomed. Opt. 15, 041513 (2010).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

K. M. Carter, J. S. George, and D. M. Rector, J. Neurosci. Methods 135, 9 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Physiol. (2)

L. B. Cohen, B. Hille, and R. D. Keynes, J. Physiol. 211, 495 (1970).
[PubMed]

K. Furusawa, J. Physiol. 67, 325 (1929).
[PubMed]

Jpn. J. Physiol. (2)

D. Landowne, Jpn. J. Physiol. 43, S7 (1993).
[PubMed]

I. Tasaki and P. M. Byrne, Jpn. J. Physiol. 43, S67 (1993).
[CrossRef] [PubMed]

Nature (1)

L. B. Cohen, R. D. Keynes, and B. Hille, Nature 218, 438 (1968).
[CrossRef] [PubMed]

NeuroImage (2)

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, NeuroImage 40, 1034 (2008).
[CrossRef] [PubMed]

X. C. Yao and J. S. George, NeuroImage 33, 898 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, Proc. Natl. Acad. Sci. USA 61, 883 (1968).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the experimental setup for CP-IOS recording. A near-IR ( 830 nm ) superluminescent laser diode (SLD-35-HP, Superlum) is used for light illumination. Lenses L1 and L2 are used to deliver and collect light, respectively. A right- circular polarizer, which consists of LP1 and QWP1, is used to produce clockwise polarization illumination of the NB (observer facing to the light propagation direction). The orientation of the long axis of nerve bundles relative to polarization plane of LP1 is indicated by α. The left-circular analyzer, which consists of QWP2 and LP2, is used to pass through anticlockwise polarization signals. A fast (10,000 Hz) PD is used for monitoring stimulus-evoked CP-IOS dynamics. The polarization planes of LP1 and LP2 are set at 0 ° and 90 ° , respectively, relative to the x axis. The fast axes of QWP1 and QWP2 are set at 45 ° , and 45 ° , respectively, relative to the x axis.

Fig. 2
Fig. 2

Left panel shows CP-IOSs (dark traces) and corresponding electrophysiological signals (gray traces) relative to α, which is the nerve orientation with respect to the x axis. Right panel shows CP-IOS responses (dark traces) and corresponding electrophysiological signals (gray traces) with respect to α. It is observed that the CP-IOS magnitude is independent from α. In contrast, the LP-IOS magnitude peaked at α = 45 ° . Vertical lines indicate the onset of stimulus. Each trace is an average of 150 recording passes. IOS magnitude is represented with units of millivolts, corresponding to the voltage output of the PD in Fig. 1. During the experiment, the light power after LP1 (Fig. 1) was constantly controlled at 1.0 mW for both CP-IOS and LP-IOS measurements.

Fig. 3
Fig. 3

Left panel shows CP-IOS amplitude (dark bars) and LP-IOS amplitude (gray bars) as a function of the nerve orientation α. Right panel shows correlation rates between the CP-IOS ( 0 ° , 15 ° , 30 ° , 45 ° , 60 ° , 75 ° and 90 ° ) and LP-IOS ( 45 ° ) responses shown in Fig. 2.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P 1 = [ 1 0 0 0 ] ,
Q 1 = R ( π 4 ) [ 1 0 0 i ] R ( π 4 ) ,
Q 2 = R ( π 4 ) [ 1 0 0 i ] R ( π 4 ) ,
P 2 = [ 0 0 0 1 ] ,
R ( θ ) = [ cos θ sin θ sin θ cos θ ] .
M ( α , ψ ) = R ( α ) [ exp ( i ψ ) 0 0 1 ] R ( α ) ,
E out _ CP - IOS = P 2 Q 2 M ( α , ψ ) Q 1 P 1 E in = 0.5 E x exp ( 2 i α ) [ 0 , 1 exp ( i ψ ) ] T .
I CP - IOS = ( E out _ CP - IOS ) T ( E out _ CP - IOS ) * = E x 2 sin 2 ( ψ / 2 ) ,
E out _ LP - IOS = P 2 M ( α , ψ ) P 1 E in = 0.5 E x sin ( 2 α ) [ 0 , exp ( i ψ ) 1 ] T .
I LP - IOS = ( E out _ LP - IOS ) T ( E out _ LP - IOS ) * = E x 2 sin 2 ( 2 α ) sin 2 ( ψ / 2 ) .
I LP - IOS = E x 2 sin 2 ( ψ / 2 ) ,

Metrics