Abstract

We used an approach based on the self-imaging property of gratings to fabricate high-resolution Fresnel zone plates (FZPs). Under certain conditions, the illumination of a parent ZP with a wideband EUV beam produces a radially oscillating intensity distribution with double the spatial frequency of the ZP. This intensity distribution is observed in a certain distance range, given by the local zone width, the focal length of the ZP, and the spectral bandwidth of the illuminating beam. This phenomenon has been used to lithographically record daughter ZPs that have approximately half the zone width, thus twice the resolution, of the parent ZP. FZPs with zone widths as low as 30nm have been fabricated in this way. Use of this technique in the extreme ultraviolet (EUV) region has the potential for high throughput production of FZPs and similar high-resolution diffraction optics with variable spatial frequency for the EUV and x-ray regions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Baez, J. Opt. Soc. Am. 51, 405 (1961).
    [CrossRef]
  2. J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).
    [CrossRef] [PubMed]
  3. J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360 (2009).
    [CrossRef] [PubMed]
  4. V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).
  5. H. H. Solak and Y. Ekinci, J. Vac. Sci. Technol. B 23, 2705 (2005).
    [CrossRef]
  6. J. W. Goodman, Introduction to Fourier Optics (Roberts & Co., 2005) pp. 55–58.
  7. M. Saidani and H. H. Solak, Microelectron. Eng. 86, 483 (2009).
    [CrossRef]
  8. J. K. W. Yang and K. K. Berggren, J. Vac. Sci. Technol. B 25, 2025 (2007).
    [CrossRef]
  9. H. H. Solak, C. David, and J. Gobrecht, Appl. Phys. Lett. 85, 2700 (2004).
    [CrossRef]
  10. S. S. Sarkar, H. H. Solak, J. Raabe, C. David, and J. F. van der Veen, Microelectron. Eng. 87, 854 (2010).
    [CrossRef]

2010 (1)

S. S. Sarkar, H. H. Solak, J. Raabe, C. David, and J. F. van der Veen, Microelectron. Eng. 87, 854 (2010).
[CrossRef]

2009 (3)

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360 (2009).
[CrossRef] [PubMed]

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

M. Saidani and H. H. Solak, Microelectron. Eng. 86, 483 (2009).
[CrossRef]

2007 (1)

J. K. W. Yang and K. K. Berggren, J. Vac. Sci. Technol. B 25, 2025 (2007).
[CrossRef]

2005 (1)

H. H. Solak and Y. Ekinci, J. Vac. Sci. Technol. B 23, 2705 (2005).
[CrossRef]

2004 (1)

H. H. Solak, C. David, and J. Gobrecht, Appl. Phys. Lett. 85, 2700 (2004).
[CrossRef]

1995 (1)

J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).
[CrossRef] [PubMed]

1961 (1)

Auzelyte, V.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

Baez, A. V.

Berggren, K. K.

J. K. W. Yang and K. K. Berggren, J. Vac. Sci. Technol. B 25, 2025 (2007).
[CrossRef]

Dais, C.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

David, C.

S. S. Sarkar, H. H. Solak, J. Raabe, C. David, and J. F. van der Veen, Microelectron. Eng. 87, 854 (2010).
[CrossRef]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360 (2009).
[CrossRef] [PubMed]

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

H. H. Solak, C. David, and J. Gobrecht, Appl. Phys. Lett. 85, 2700 (2004).
[CrossRef]

Ekinci, Y.

H. H. Solak and Y. Ekinci, J. Vac. Sci. Technol. B 23, 2705 (2005).
[CrossRef]

Farquet, P.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

Fink, R. H.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360 (2009).
[CrossRef] [PubMed]

Gobrecht, J.

H. H. Solak, C. David, and J. Gobrecht, Appl. Phys. Lett. 85, 2700 (2004).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Co., 2005) pp. 55–58.

Grützmacher, D.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

Heyderman, L. J.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

Howells, M.

J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).
[CrossRef] [PubMed]

Jacobsen, C.

J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).
[CrossRef] [PubMed]

Jefimovs, K.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360 (2009).
[CrossRef] [PubMed]

Kirz, J.

J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).
[CrossRef] [PubMed]

Luo, F.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

Maassdorf, A.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360 (2009).
[CrossRef] [PubMed]

Olliges, S.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

Padeste, C.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

Pilvi, T.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360 (2009).
[CrossRef] [PubMed]

Raabe, J.

S. S. Sarkar, H. H. Solak, J. Raabe, C. David, and J. F. van der Veen, Microelectron. Eng. 87, 854 (2010).
[CrossRef]

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360 (2009).
[CrossRef] [PubMed]

Ritala, M.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360 (2009).
[CrossRef] [PubMed]

Sahoo, P. K.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

Saidani, M.

M. Saidani and H. H. Solak, Microelectron. Eng. 86, 483 (2009).
[CrossRef]

Sarkar, S. S.

S. S. Sarkar, H. H. Solak, J. Raabe, C. David, and J. F. van der Veen, Microelectron. Eng. 87, 854 (2010).
[CrossRef]

Senoner, M.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360 (2009).
[CrossRef] [PubMed]

Solak, H. H.

S. S. Sarkar, H. H. Solak, J. Raabe, C. David, and J. F. van der Veen, Microelectron. Eng. 87, 854 (2010).
[CrossRef]

M. Saidani and H. H. Solak, Microelectron. Eng. 86, 483 (2009).
[CrossRef]

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

H. H. Solak and Y. Ekinci, J. Vac. Sci. Technol. B 23, 2705 (2005).
[CrossRef]

H. H. Solak, C. David, and J. Gobrecht, Appl. Phys. Lett. 85, 2700 (2004).
[CrossRef]

Thomson, T.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

Turchanin, A.

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

van der Veen, J. F.

S. S. Sarkar, H. H. Solak, J. Raabe, C. David, and J. F. van der Veen, Microelectron. Eng. 87, 854 (2010).
[CrossRef]

Vila-Comamala, J.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360 (2009).
[CrossRef] [PubMed]

Yang, J. K. W.

J. K. W. Yang and K. K. Berggren, J. Vac. Sci. Technol. B 25, 2025 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

H. H. Solak, C. David, and J. Gobrecht, Appl. Phys. Lett. 85, 2700 (2004).
[CrossRef]

J. Microlithogr., Microfabr., Microsyst. (1)

V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, J. Microlithogr., Microfabr., Microsyst. 8, 021204 (2009).

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (2)

H. H. Solak and Y. Ekinci, J. Vac. Sci. Technol. B 23, 2705 (2005).
[CrossRef]

J. K. W. Yang and K. K. Berggren, J. Vac. Sci. Technol. B 25, 2025 (2007).
[CrossRef]

Microelectron. Eng. (2)

M. Saidani and H. H. Solak, Microelectron. Eng. 86, 483 (2009).
[CrossRef]

S. S. Sarkar, H. H. Solak, J. Raabe, C. David, and J. F. van der Veen, Microelectron. Eng. 87, 854 (2010).
[CrossRef]

Q. Rev. Biophys. (1)

J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).
[CrossRef] [PubMed]

Ultramicroscopy (1)

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maassdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360 (2009).
[CrossRef] [PubMed]

Other (1)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Co., 2005) pp. 55–58.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the region (yellow area between curves z a ( r ) and z c ( r ) ) behind the parent ZP, where the spatial frequency-doubled achromatic image may be recorded (not to scale). The region is further bound by the diffraction angle on the outer edge. The vertical (blue) line represents the position of the substrate on which the pattern is to be recorded.

Fig. 2
Fig. 2

Simulated intensity pattern in the near field of the parent mask (Mo, D = 270 μm , f = 1 mm and Δ r N = 50 nm ) illuminated with EUV radiation [(A) monochromatic, (B)  Δ λ / λ = 3 % ]. The local period is 120 nm . The intensity profile (blue curve at far right) at z = 80 μm is plotted against the dark ZP profile to its left. The curvature observed in the intensity profile along z is due to the elliptical form of the interference fringes between a converging and a diverging spherical wave. In panel (A), the z-dependent self-images are observed, whereas in panel (B), the achromatic z-invariant image is obtained beyond z a 60 μm up to z c = 140 μm . In panel (B), the intensity profile shows double spatial frequency compared to the parent ZP profile.

Fig. 3
Fig. 3

(A)–(D) Flow diagram of the parent mask fabrication technique. (E) Scanning electron micrograph (SEM) of the cross section of a Mo ZP profile with p = 100 nm .

Fig. 4
Fig. 4

SEM images of (top) the outer zones of a mask and (bottom) the corresponding daughter ZP. Inset shows the full ZP on the mask.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z a ( r ) = 2 λ 2 f 2 Δ λ 1 r 2 ,
z c ( r ) = ( λ 2 f 3 2 Δ λ ) 1 / 2 1 r .

Metrics