Abstract

We report on what is believed to be the first example of an ultrawide, bandpass filter, based on a high-contrast multicomponent one-dimensional Si photonic crystal (PC). The effect of the disappearance of a limited number of flat stopbands and their replacement with extended passbands is demonstrated over a wide IR range. The passbands obtained exhibit a high transmission of 92% to 96% and a substantial bandwidth of 1800nm, which is spectrally flat within the passband. The multicomponent PC model suggested can be applied to the design of any micro- or nanostructured semiconductor or dielectric material for application across a wide spectral range.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Missiroli, Silicon-Based Microphotonics: from Basics to Applications (IOS, 1999).
  2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  3. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  4. J. D. Joannopoulos, S. G. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University, 1995, 2008).
  5. W. R. Jameroz, R. Kruzelecky, and E. I. Haddad, Applied Microphotonics (CRC Press, 2006).
    [CrossRef]
  6. A. Baldycheva, V. Tolmachev, T. Perova, and K. Berwick, IEEE Photon. Technol. Lett. 23, 200 (2011).
    [CrossRef]
  7. G. Barillaro, S. Merlo, and L. M. Strambini, IEEE J. Sel. Top. Quantum Electron. 14, 1074 (2008).
    [CrossRef]
  8. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  9. V. A. Tolmachev, E. V. Astrova, J. A. Pilyugina, T. S. Perova, R. A. Moore, and J. K. Vij, Opt. Mater. 27, 831 (2005).
    [CrossRef]
  10. Y. Uenishi, M. Tsugai, and M. Mehregany, J. Micromech. Microeng. 5, 305 (1995).
    [CrossRef]

2011

A. Baldycheva, V. Tolmachev, T. Perova, and K. Berwick, IEEE Photon. Technol. Lett. 23, 200 (2011).
[CrossRef]

2008

G. Barillaro, S. Merlo, and L. M. Strambini, IEEE J. Sel. Top. Quantum Electron. 14, 1074 (2008).
[CrossRef]

2005

V. A. Tolmachev, E. V. Astrova, J. A. Pilyugina, T. S. Perova, R. A. Moore, and J. K. Vij, Opt. Mater. 27, 831 (2005).
[CrossRef]

1995

Y. Uenishi, M. Tsugai, and M. Mehregany, J. Micromech. Microeng. 5, 305 (1995).
[CrossRef]

1987

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Astrova, E. V.

V. A. Tolmachev, E. V. Astrova, J. A. Pilyugina, T. S. Perova, R. A. Moore, and J. K. Vij, Opt. Mater. 27, 831 (2005).
[CrossRef]

Baldycheva, A.

A. Baldycheva, V. Tolmachev, T. Perova, and K. Berwick, IEEE Photon. Technol. Lett. 23, 200 (2011).
[CrossRef]

Barillaro, G.

G. Barillaro, S. Merlo, and L. M. Strambini, IEEE J. Sel. Top. Quantum Electron. 14, 1074 (2008).
[CrossRef]

Berwick, K.

A. Baldycheva, V. Tolmachev, T. Perova, and K. Berwick, IEEE Photon. Technol. Lett. 23, 200 (2011).
[CrossRef]

Haddad, E. I.

W. R. Jameroz, R. Kruzelecky, and E. I. Haddad, Applied Microphotonics (CRC Press, 2006).
[CrossRef]

Jameroz, W. R.

W. R. Jameroz, R. Kruzelecky, and E. I. Haddad, Applied Microphotonics (CRC Press, 2006).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University, 1995, 2008).

John, S.

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Kruzelecky, R.

W. R. Jameroz, R. Kruzelecky, and E. I. Haddad, Applied Microphotonics (CRC Press, 2006).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University, 1995, 2008).

Mehregany, M.

Y. Uenishi, M. Tsugai, and M. Mehregany, J. Micromech. Microeng. 5, 305 (1995).
[CrossRef]

Merlo, S.

G. Barillaro, S. Merlo, and L. M. Strambini, IEEE J. Sel. Top. Quantum Electron. 14, 1074 (2008).
[CrossRef]

Missiroli, M.

M. Missiroli, Silicon-Based Microphotonics: from Basics to Applications (IOS, 1999).

Moore, R. A.

V. A. Tolmachev, E. V. Astrova, J. A. Pilyugina, T. S. Perova, R. A. Moore, and J. K. Vij, Opt. Mater. 27, 831 (2005).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Perova, T.

A. Baldycheva, V. Tolmachev, T. Perova, and K. Berwick, IEEE Photon. Technol. Lett. 23, 200 (2011).
[CrossRef]

Perova, T. S.

V. A. Tolmachev, E. V. Astrova, J. A. Pilyugina, T. S. Perova, R. A. Moore, and J. K. Vij, Opt. Mater. 27, 831 (2005).
[CrossRef]

Pilyugina, J. A.

V. A. Tolmachev, E. V. Astrova, J. A. Pilyugina, T. S. Perova, R. A. Moore, and J. K. Vij, Opt. Mater. 27, 831 (2005).
[CrossRef]

Strambini, L. M.

G. Barillaro, S. Merlo, and L. M. Strambini, IEEE J. Sel. Top. Quantum Electron. 14, 1074 (2008).
[CrossRef]

Tolmachev, V.

A. Baldycheva, V. Tolmachev, T. Perova, and K. Berwick, IEEE Photon. Technol. Lett. 23, 200 (2011).
[CrossRef]

Tolmachev, V. A.

V. A. Tolmachev, E. V. Astrova, J. A. Pilyugina, T. S. Perova, R. A. Moore, and J. K. Vij, Opt. Mater. 27, 831 (2005).
[CrossRef]

Tsugai, M.

Y. Uenishi, M. Tsugai, and M. Mehregany, J. Micromech. Microeng. 5, 305 (1995).
[CrossRef]

Uenishi, Y.

Y. Uenishi, M. Tsugai, and M. Mehregany, J. Micromech. Microeng. 5, 305 (1995).
[CrossRef]

Vij, J. K.

V. A. Tolmachev, E. V. Astrova, J. A. Pilyugina, T. S. Perova, R. A. Moore, and J. K. Vij, Opt. Mater. 27, 831 (2005).
[CrossRef]

Winn, S. G.

J. D. Joannopoulos, S. G. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University, 1995, 2008).

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

G. Barillaro, S. Merlo, and L. M. Strambini, IEEE J. Sel. Top. Quantum Electron. 14, 1074 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Baldycheva, V. Tolmachev, T. Perova, and K. Berwick, IEEE Photon. Technol. Lett. 23, 200 (2011).
[CrossRef]

J. Micromech. Microeng.

Y. Uenishi, M. Tsugai, and M. Mehregany, J. Micromech. Microeng. 5, 305 (1995).
[CrossRef]

Opt. Mater.

V. A. Tolmachev, E. V. Astrova, J. A. Pilyugina, T. S. Perova, R. A. Moore, and J. K. Vij, Opt. Mater. 27, 831 (2005).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Other

J. D. Joannopoulos, S. G. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University, 1995, 2008).

W. R. Jameroz, R. Kruzelecky, and E. I. Haddad, Applied Microphotonics (CRC Press, 2006).
[CrossRef]

M. Missiroli, Silicon-Based Microphotonics: from Basics to Applications (IOS, 1999).

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a bandpass filter design viewed as a PBG mirror with thermally grown oxide on top. The number of periods = 3 . The etching depth is denoted as h etch .

Fig. 2
Fig. 2

3D representation of (a) flattop SBs centered at 0.8 NF in the range of filling fractions f Si = 0.25 0.33 before oxidation and (b) flattop passbands centered at the same frequency calculated for the same device after oxidation in the range f Si = 0.10 0.17 . The SiO 2 thickness is d ox = 0.18 a .

Fig. 3
Fig. 3

GMs for a two-component PC filter with optical contrast n = 3.42 / 1 (light cyan) and for a three-component PC filter with thermally grown SiO 2 of thickness d ox = 0.18 a (light magenta). The map of TBs (black curves) is presented for the three-component PC.

Fig. 4
Fig. 4

Scanning electron microscope image of PC filter based on grooved Si with thermally grown SiO 2 of thickness d ox = 0.72 μm . The lattice period a = 4 μm . The number of periods = 3 .

Fig. 5
Fig. 5

Experimental (red dashed line) and calculated (black solid line) (a) R spectra and (b) T spectra demonstrating the transformation from stopbands to passband at an operational wavelength of λ c = 4.2 μm .

Fig. 6
Fig. 6

GM (light magenta) and map of TBs (dark gray) calculated for the fabricated filter over a limited range of filling fractions, f Si .

Metrics