Abstract

A highly sensitive compact hydrophone, based on a pi-phase-shifted fiber Bragg grating, has been developed for the measurement of wideband ultrasonic fields. The grating exhibits a sharp resonance, whose centroid wavelength is pressure sensitive. The resonance is monitored by a continuous-wave (CW) laser to measure ultrasound-induced pressure variations within the grating. In contrast to standard fiber sensors, the high finesse of the resonance—which is the reason for the sensor’s high sensitivity—is not associated with a long propagation length. Light localization around the phase shift reduces the effective size of the sensor below that of the grating and is scaled inversely with the resonance spectral width. In our system, an effective sensor length of 270μm, pressure sensitivity of 440Pa, and effective bandwidth of 10MHz were achieved. This performance makes our design attractive for medical imaging applications, such as optoacoustic tomography, in which compact, sensitive, and wideband acoustic detectors are required.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Razansky, M. Distel, C. Vinegoni, R. Ma, M. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
    [CrossRef]
  2. P. C. Beard and T. N. Mills, Electron. Lett. 33, 801 (1997).
    [CrossRef]
  3. H. Lamela, D. Gallego, and A. Oraevsky, Opt. Lett. 34, 3695 (2009).
    [CrossRef] [PubMed]
  4. D. Gallego and H. Lamela, Opt. Lett. 34, 1807 (2009).
    [CrossRef] [PubMed]
  5. D. R. Bacon, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 152 (1988).
    [CrossRef] [PubMed]
  6. N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, Appl. Opt. 37, 8120 (1998).
    [CrossRef]
  7. D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).
    [CrossRef]
  8. C. C. Ye and R. P. Tatam, Smart Mater. Struct. 14, 170 (2005).
    [CrossRef]
  9. S. W. Løvseth, J. T. Kringlebotn, E. Rønnekleiv, and K. Bløtekjær, Appl. Opt. 38, 4821 (1999).
    [CrossRef]
  10. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  11. A. Rosenthal and M. Horowitz, J. Opt. Soc. Am. A 22, 84 (2005).
    [CrossRef]

2009 (3)

D. Razansky, M. Distel, C. Vinegoni, R. Ma, M. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

D. Gallego and H. Lamela, Opt. Lett. 34, 1807 (2009).
[CrossRef] [PubMed]

H. Lamela, D. Gallego, and A. Oraevsky, Opt. Lett. 34, 3695 (2009).
[CrossRef] [PubMed]

2005 (2)

C. C. Ye and R. P. Tatam, Smart Mater. Struct. 14, 170 (2005).
[CrossRef]

A. Rosenthal and M. Horowitz, J. Opt. Soc. Am. A 22, 84 (2005).
[CrossRef]

2003 (1)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).
[CrossRef]

1999 (1)

1998 (1)

1997 (2)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

P. C. Beard and T. N. Mills, Electron. Lett. 33, 801 (1997).
[CrossRef]

1988 (1)

D. R. Bacon, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 152 (1988).
[CrossRef] [PubMed]

Bacon, D. R.

D. R. Bacon, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 152 (1988).
[CrossRef] [PubMed]

Beard, P. C.

P. C. Beard and T. N. Mills, Electron. Lett. 33, 801 (1997).
[CrossRef]

Bennion, I.

Betz, D. C.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).
[CrossRef]

Bløtekjær, K.

Culshaw, B.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).
[CrossRef]

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, M. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Fisher, N. E.

Gallego, D.

Gavrilov, L. R.

Hand, J. W.

Horowitz, M.

Jackson, D. A.

Koster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, M. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Kringlebotn, J. T.

Lamela, H.

Løvseth, S. W.

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, M. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Mills, T. N.

P. C. Beard and T. N. Mills, Electron. Lett. 33, 801 (1997).
[CrossRef]

Ntziachristos, V.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, M. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Oraevsky, A.

Pannell, C. N.

Perrimon, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, M. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Razansky, D.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, M. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Rønnekleiv, E.

Rosenthal, A.

Staszewski, W. J.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).
[CrossRef]

Tatam, R. P.

C. C. Ye and R. P. Tatam, Smart Mater. Struct. 14, 170 (2005).
[CrossRef]

Thursby, G.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).
[CrossRef]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, M. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Webb, D. J.

Ye, C. C.

C. C. Ye and R. P. Tatam, Smart Mater. Struct. 14, 170 (2005).
[CrossRef]

Zhang, L.

Appl. Opt. (2)

Electron. Lett. (1)

P. C. Beard and T. N. Mills, Electron. Lett. 33, 801 (1997).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

D. R. Bacon, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 152 (1988).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Photon. (1)

D. Razansky, M. Distel, C. Vinegoni, R. Ma, M. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Opt. Lett. (2)

Smart Mater. Struct. (2)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Smart Mater. Struct. 12, 122 (2003).
[CrossRef]

C. C. Ye and R. P. Tatam, Smart Mater. Struct. 14, 170 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic description of the detection scheme. A CW laser is used to monitor the reflection of an FBG.

Fig. 2
Fig. 2

Reflection spectrum of the grating, as obtained using unpolarized light. The two dips in the bandgap correspond to the two polarization modes. The inset shows in high resolution the resonance of the slow-axis polarization obtained with a polarized source. The figures are shown in linear scale.

Fig. 3
Fig. 3

(a) Temporal and (b) spectral responses (solid curves) of the optical sensor obtained for an acoustic plane wave formed by an ultrasound transducer fed with 67 ns square pulses. The inset shows the maximal voltage signal obtained as a function of acoustic pressure; at 750 kPa , 20% deviation from linear response is obtained. The spectrum of the acoustic source, as measured by the hydrophone, is shown in (b).

Fig. 4
Fig. 4

Relative sensitivity of the FBG used in this work as function of the perturbed length, when the perturbation is symmetrically applied around the pi-phase jump. The figure shows that a 270 μm length is responsible for half of the grating’s sensitivity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r g = 2 k κ [ ( γ κ tanh γ L / 2 i k κ ) 2 1 ] 1 ,
| u ( z ) | 1 | r g ( k ) | 2 e κ L / 2 κ | z L / 2 | ,

Metrics