Abstract

The development of a laser-induced fluorescence detection scheme for probing combustion-relevant species using a high-repetition-rate ultrafast laser is described. A femtosecond laser system with a 1kHz repetition rate is used to induce fluorescence, following two-photon excitation (TPE), from hydroxyl (OH) radicals that are present in premixed laminar flames. The experimental TPE and one-photon fluorescence spectra resulting from broadband excitation into the (0,0) band of the OH A2+X2Π system are compared to simulated spectra. Additionally, the effects of non-transform-limited femtosecond pulses on TPE efficiency is investigated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).
  2. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, Opt. Lett. 34, 3857 (2009).
    [CrossRef] [PubMed]
  3. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, Opt. Lett. 35, 2430 (2010).
    [CrossRef] [PubMed]
  4. J. R. Gord, T. R. Meyer, and S. Roy, Annu. Rev. Anal. Chem. 1, 663 (2008).
    [CrossRef]
  5. M. W. Renfro, W. A. Guttenfelder, G. B. King, and N. M. Laurendeau, Combust. Flame 123, 389 (2000).
    [CrossRef]
  6. N. M. Laurendeau and J. E. M. Goldsmith, Combust. Sci. Technol. 63, 139 (1989).
    [CrossRef]
  7. D. R. Crosley and G. P. Smith, J. Chem. Phys. 79, 4764 (1983).
    [CrossRef]
  8. V. V. Lozovoy, I. Pastirk, and M. Dantus, Opt. Lett. 29, 775 (2004).
    [CrossRef] [PubMed]
  9. J. Luque and D. R. Crosley, SRI International Report MP , 99 (1999).
  10. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, Appl. Opt. 44, 6729 (2005).
    [CrossRef] [PubMed]
  11. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, Combust. Flame 109, 323 (1997).
    [CrossRef]
  12. R. G. Bray and R. M. Hochstrasser, Mol. Phys. 31, 1199 (1976).
    [CrossRef]

2010 (1)

2009 (1)

2008 (1)

J. R. Gord, T. R. Meyer, and S. Roy, Annu. Rev. Anal. Chem. 1, 663 (2008).
[CrossRef]

2005 (1)

2004 (1)

2000 (1)

M. W. Renfro, W. A. Guttenfelder, G. B. King, and N. M. Laurendeau, Combust. Flame 123, 389 (2000).
[CrossRef]

1999 (1)

J. Luque and D. R. Crosley, SRI International Report MP , 99 (1999).

1997 (1)

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, Combust. Flame 109, 323 (1997).
[CrossRef]

1989 (1)

N. M. Laurendeau and J. E. M. Goldsmith, Combust. Sci. Technol. 63, 139 (1989).
[CrossRef]

1983 (1)

D. R. Crosley and G. P. Smith, J. Chem. Phys. 79, 4764 (1983).
[CrossRef]

1976 (1)

R. G. Bray and R. M. Hochstrasser, Mol. Phys. 31, 1199 (1976).
[CrossRef]

Anderson, T. N.

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, Combust. Flame 109, 323 (1997).
[CrossRef]

Bray, R. G.

R. G. Bray and R. M. Hochstrasser, Mol. Phys. 31, 1199 (1976).
[CrossRef]

Crosley, D. R.

J. Luque and D. R. Crosley, SRI International Report MP , 99 (1999).

D. R. Crosley and G. P. Smith, J. Chem. Phys. 79, 4764 (1983).
[CrossRef]

Dantus, M.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

Goldsmith, J. E. M.

N. M. Laurendeau and J. E. M. Goldsmith, Combust. Sci. Technol. 63, 139 (1989).
[CrossRef]

Gord, J. R.

Guttenfelder, W. A.

M. W. Renfro, W. A. Guttenfelder, G. B. King, and N. M. Laurendeau, Combust. Flame 123, 389 (2000).
[CrossRef]

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, Combust. Flame 109, 323 (1997).
[CrossRef]

Hochstrasser, R. M.

R. G. Bray and R. M. Hochstrasser, Mol. Phys. 31, 1199 (1976).
[CrossRef]

Katta, V. R.

King, G. B.

M. W. Renfro, W. A. Guttenfelder, G. B. King, and N. M. Laurendeau, Combust. Flame 123, 389 (2000).
[CrossRef]

Kulatilaka, W. D.

Laurendeau, N. M.

M. W. Renfro, W. A. Guttenfelder, G. B. King, and N. M. Laurendeau, Combust. Flame 123, 389 (2000).
[CrossRef]

N. M. Laurendeau and J. E. M. Goldsmith, Combust. Sci. Technol. 63, 139 (1989).
[CrossRef]

Lozovoy, V. V.

Lucht, R. P.

Luque, J.

J. Luque and D. R. Crosley, SRI International Report MP , 99 (1999).

Meyer, T. R.

Miller, J. D.

Pastirk, I.

Renfro, M. W.

M. W. Renfro, W. A. Guttenfelder, G. B. King, and N. M. Laurendeau, Combust. Flame 123, 389 (2000).
[CrossRef]

Richardson, D. R.

Roy, S.

Slipchenko, M. N.

Smith, G. P.

D. R. Crosley and G. P. Smith, J. Chem. Phys. 79, 4764 (1983).
[CrossRef]

Stauffer, H. U.

Annu. Rev. Anal. Chem. (1)

J. R. Gord, T. R. Meyer, and S. Roy, Annu. Rev. Anal. Chem. 1, 663 (2008).
[CrossRef]

Appl. Opt. (1)

Combust. Flame (2)

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, Combust. Flame 109, 323 (1997).
[CrossRef]

M. W. Renfro, W. A. Guttenfelder, G. B. King, and N. M. Laurendeau, Combust. Flame 123, 389 (2000).
[CrossRef]

Combust. Sci. Technol. (1)

N. M. Laurendeau and J. E. M. Goldsmith, Combust. Sci. Technol. 63, 139 (1989).
[CrossRef]

J. Chem. Phys. (1)

D. R. Crosley and G. P. Smith, J. Chem. Phys. 79, 4764 (1983).
[CrossRef]

Mol. Phys. (1)

R. G. Bray and R. M. Hochstrasser, Mol. Phys. 31, 1199 (1976).
[CrossRef]

Opt. Lett. (3)

SRI International Report MP (1)

J. Luque and D. R. Crosley, SRI International Report MP , 99 (1999).

Other (1)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Comparison of experimental and simulated dispersed-fluorescence signal from OH following broadband TPE at 622 nm . Symbols, experimental signal obtained from a C 2 H 4 air flame. Curves, calculated A X emission spectrum (high-resolution stick spectrum and spectrum convolved with a 3.0 nm instrument response function) from thermalized ( 2400 K ) OH.

Fig. 2
Fig. 2

Comparison of experimental and simulated two-photon (TP) OH spectra ( H 2 air flame). Experimental data (symbols), LIF TPE spectrum obtained by scanning the broadband TPE wavelength. Simulations (curves), high- resolution and Gaussian-broadened TPA OH spectra, assuming an adiabatic flame temperature ( 2400 K ).

Fig. 3
Fig. 3

Effect of chirp on TPE fluorescence signal from OH ( H 2 air flame). Simulations were carried out using the experimental spectral envelope and the calculated TPA intensities at 2400 K , as described in the text. The corresponding calculated pulse duration (FWHM) is shown on the upper axis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ TPA ( J , J ) n | A , v , J | μ | n · n | μ | X , v , J | 2

Metrics