Abstract

We design and fabricate ultra-high-quality (Q) photonic nanocavities in a symmetrically glass-clad silicon (Si) two-dimensional (2D) photonic crystal (PhC) structure. We theoretically investigate the dependence of the refractive index of the glass on the Q factors for asymmetric and symmetric structures. We show that the index-symmetric distribution of the glass is a critical factor to realize ultrahigh Q factors for glass-clad 2D PhC structures. We fabricate symmetrically glass-clad Si PhC nanocavities and achieve a record Q factor of 1×106, comparable with the highest Q factors of nanocavities in air-bridge structures.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
    [CrossRef] [PubMed]
  2. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
    [CrossRef] [PubMed]
  3. B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
    [CrossRef]
  4. S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
    [CrossRef]
  5. M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photon. 2, 741 (2008).
    [CrossRef]
  6. T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 92, 261112 (2008).
    [CrossRef]
  7. Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, Appl. Phys. Lett. 83, 3239 (2003).
    [CrossRef]
  8. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, Appl. Phys. Lett. 88, 011112 (2006).
    [CrossRef]
  9. A. R. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, Opt. Express 16, 12084 (2008).
    [CrossRef] [PubMed]
  10. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, Opt. Express 18, 15859 (2010).
    [CrossRef] [PubMed]
  11. I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, and J. M. Fedeli, Opt. Lett. 31, 513 (2006).
    [CrossRef] [PubMed]
  12. M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, J. Opt. 12, 075101 (2010).
    [CrossRef]
  13. S. W. Jeon, B. S. Song, and S. Noda, Opt. Express 18, 19361 (2010).
    [CrossRef] [PubMed]
  14. Y. Tanaka, T. Asano, and S. Noda, J. Lightwave Technol. 26, 1532 (2008).
    [CrossRef]
  15. M. J. Word, I. Adesida, and P. R. Berger, J. Vac. Sci. Technol. B 21, L12 (2003).
    [CrossRef]
  16. L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, IEEE Photonics Technol. Lett. 21, 1166 (2009).
    [CrossRef]
  17. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Phys. Rev. B 79, 085112 (2009).
    [CrossRef]
  18. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]

2010 (3)

2009 (2)

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, IEEE Photonics Technol. Lett. 21, 1166 (2009).
[CrossRef]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Phys. Rev. B 79, 085112 (2009).
[CrossRef]

2008 (4)

Y. Tanaka, T. Asano, and S. Noda, J. Lightwave Technol. 26, 1532 (2008).
[CrossRef]

M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photon. 2, 741 (2008).
[CrossRef]

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

A. R. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, Opt. Express 16, 12084 (2008).
[CrossRef] [PubMed]

2007 (1)

S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
[CrossRef]

2006 (2)

2005 (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
[CrossRef]

2003 (4)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, Appl. Phys. Lett. 83, 3239 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

M. J. Word, I. Adesida, and P. R. Berger, J. Vac. Sci. Technol. B 21, L12 (2003).
[CrossRef]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

Adesida, I.

M. J. Word, I. Adesida, and P. R. Berger, J. Vac. Sci. Technol. B 21, L12 (2003).
[CrossRef]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Asano, T.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Phys. Rev. B 79, 085112 (2009).
[CrossRef]

Y. Tanaka, T. Asano, and S. Noda, J. Lightwave Technol. 26, 1532 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Bagheri, M.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, IEEE Photonics Technol. Lett. 21, 1166 (2009).
[CrossRef]

Berger, P. R.

M. J. Word, I. Adesida, and P. R. Berger, J. Vac. Sci. Technol. B 21, L12 (2003).
[CrossRef]

Cao, J.-R.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, IEEE Photonics Technol. Lett. 21, 1166 (2009).
[CrossRef]

Choi, S.-J.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, IEEE Photonics Technol. Lett. 21, 1166 (2009).
[CrossRef]

Choi, Y. S.

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, Appl. Phys. Lett. 83, 3239 (2003).
[CrossRef]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

Dapkus, P. D.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, IEEE Photonics Technol. Lett. 21, 1166 (2009).
[CrossRef]

De La Rue, R. M.

El Melhaoui, L.

Fedeli, J. M.

Forchel, A.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
[CrossRef]

Hagino, H.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Phys. Rev. B 79, 085112 (2009).
[CrossRef]

Hatsuta, R.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

Herzig, H. P.

Höfling, S.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

Itoh, M.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, J. Opt. 12, 075101 (2010).
[CrossRef]

Jeon, S. W.

Johnson, N. P.

Kamp, M.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Kawasaki, K.

Kim, S. H.

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, Appl. Phys. Lett. 83, 3239 (2003).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Komori, K.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, J. Opt. 12, 075101 (2010).
[CrossRef]

Kuramochi, E.

Kwon, S.-H.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Lee, Y. H.

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, Appl. Phys. Lett. 83, 3239 (2003).
[CrossRef]

Lu, L.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, IEEE Photonics Technol. Lett. 21, 1166 (2009).
[CrossRef]

Lyan, P.

Märki, I.

Mock, A.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, IEEE Photonics Technol. Lett. 21, 1166 (2009).
[CrossRef]

Mori, M.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, J. Opt. 12, 075101 (2010).
[CrossRef]

Noda, S.

S. W. Jeon, B. S. Song, and S. Noda, Opt. Express 18, 19361 (2010).
[CrossRef] [PubMed]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Phys. Rev. B 79, 085112 (2009).
[CrossRef]

Y. Tanaka, T. Asano, and S. Noda, J. Lightwave Technol. 26, 1532 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

Notomi, M.

O’Brien, J. D.

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, IEEE Photonics Technol. Lett. 21, 1166 (2009).
[CrossRef]

Okano, M.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, J. Opt. 12, 075101 (2010).
[CrossRef]

Roh, Y. G.

Salt, M.

Schlereth, T. W.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Shin, J. H.

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, Appl. Phys. Lett. 83, 3239 (2003).
[CrossRef]

Song, B. S.

S. W. Jeon, B. S. Song, and S. Noda, Opt. Express 18, 19361 (2010).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Sorel, M.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Stanley, R.

Stichel, T.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Sugaya, T.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, J. Opt. 12, 075101 (2010).
[CrossRef]

Sugisaka, J.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, J. Opt. 12, 075101 (2010).
[CrossRef]

Sung, J. Y.

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, Appl. Phys. Lett. 83, 3239 (2003).
[CrossRef]

Sünner, T.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Takahashi, Y.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Phys. Rev. B 79, 085112 (2009).
[CrossRef]

Tanabe, T.

Tanaka, Y.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Phys. Rev. B 79, 085112 (2009).
[CrossRef]

Y. Tanaka, T. Asano, and S. Noda, J. Lightwave Technol. 26, 1532 (2008).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

Taniyama, H.

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Word, M. J.

M. J. Word, I. Adesida, and P. R. Berger, J. Vac. Sci. Technol. B 21, L12 (2003).
[CrossRef]

Yamada, T.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, J. Opt. 12, 075101 (2010).
[CrossRef]

Yamamoto, N.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, J. Opt. 12, 075101 (2010).
[CrossRef]

Zain, A. R.

Appl. Phys. Lett. (3)

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, Appl. Phys. Lett. 83, 3239 (2003).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, Appl. Phys. Lett. 88, 011112 (2006).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

L. Lu, A. Mock, M. Bagheri, J.-R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, IEEE Photonics Technol. Lett. 21, 1166 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. (1)

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, J. Opt. 12, 075101 (2010).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. J. Word, I. Adesida, and P. R. Berger, J. Vac. Sci. Technol. B 21, L12 (2003).
[CrossRef]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
[CrossRef]

Nat. Photon. (2)

S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
[CrossRef]

M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photon. 2, 741 (2008).
[CrossRef]

Nature (3)

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Phys. Rev. B 79, 085112 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of fully glass-clad Si PhC nanocavity consisting of multiple PhC waveguides having different lattice constants ( a 1 = 0.9987 a 0 , a 2 = 0.9956 a 0 , a 3 = 0.991 a 0 , a 4 = 0.984 a 0 , a 5 = 0.976 a 0 , a 6 = 0.966 a 0 ). (b) The electric field ( E y ) distribution of the fundamental mode for the cavity. (c) The mode profile along the center line of the cavity (solid curve) fitted with an ideal Gaussian envelope function (broken curves).

Fig. 2
Fig. 2

(a), (b) Cross-sectional schematic of a fully SOG-clad Si nanocavity and the calculated Q factors for various n SOG . (c), (d) Cross-sectional schematic of a SOG (top)-clad and a SiO 2 (bottom)-clad Si nanocavity and the calculated Q factors for various n SOG with n SiO 2 = 1.45 .

Fig. 3
Fig. 3

(a) SEM image of the fabricated Si cavity before SOG coating. Here, the lattice constants are set as the following: a 0 = 400.00 nm , a 1 = 398.75 nm , a 2 = 398.75 nm , a 3 = 396.25 nm , a 4 = 393.75 , a 5 = 390.00 nm , a 6 = 386.25 nm . (b) Top-view optical microscope image and (c) cross-sectional SEM image of the cavity after SOG coating.

Fig. 4
Fig. 4

(a) Plot of measured Q factors for various samples of fabricated cavities. (b) Detailed resonant spectrum of the highest Q-factor cavity in (a). The solid curve shows the fitted Lorentzian curve for the estimation of the line width and Q value of the cavity.

Metrics