Abstract

This Letter presents an intracavity scheme for diode laser based two-photon spectroscopy. To demonstrate generality, three Cs133 hyperfine transition groups of different wavelengths are shown. For the 6S–6D transitions, we achieved a 102 times better signal-to-noise ratio than in previous work [J. Phys. Soc. Jpn. 74, 2487 (2005)] with 103 times less laser power, revealing some previously vague and unobserved spectra. Possible mutual influences between the two-photon absorber and laser cavity were investigated for the first time to our knowledge, which leads to the application of a reliable hand-sized optical frequency reference. Our approach is applicable for most of the two-photon spectroscopy of alkali atoms.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For cesium atom: T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, J. Phys. Soc. Jpn. 74, 2487 (2005).
    [CrossRef]
  2. Professor Nobuo Nisimiya, Tokyo Polytechnic University, Atsugi-City, Kanagawa, 243-0297 Japan, nisimiya@em.t-kougei.ac.jp (personal communication, November 8, 2010).
  3. M. Gunawardena, D. S. Elliott, M. S. Safronova, and U. Safronova, Phys. Rev. A 75, 022507 (2007).
    [CrossRef]
  4. Y.-C. Lee, H.-C. Chui, Y.-Y. Chen, Y.-H. Chang, and C.-C. Tsai, Opt. Commun. 283, 1788 (2010).
    [CrossRef]
  5. For rubidium atom, 778nm standard: C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, Metrologia 42, 464 (2005), and references therein.
    [CrossRef]
  6. For cesium: G. Hagel, C. Nesi, L. Jozefowski, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
    [CrossRef]
  7. For rubidium: M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, Opt. Commun. 207, 233 (2002). The cavity enhancing scheme is the most popular scheme to save power. It could be compact; however, optical feedback directly from the cavity is serious. More optical isolation and electronics are needed, which added to the cost and complexity.
    [CrossRef]
  8. C.-Y. Cheng, C.-M. Wu, G.-B. Liao, and W.-Y. Cheng, Opt. Lett. 32, 536 (2007).
    [CrossRef]
  9. L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, Opt. Commun. 117, 541 (1995).
    [CrossRef]
  10. W. T. Hill, III, T. W. Hansch, and A. L. Schawlow, Appl. Opt. 24, 3718 (1985).
    [CrossRef]
  11. W. Jamroz, D. Hugon, T. B. Cave, A. Guest, and A. D. May, Appl. Opt. 23, 2906 (1984), and references therein.
    [CrossRef] [PubMed]
  12. Z. Bozoki, J. Sneider, G. Szabo, A. Miklos, M. Serenvi, G. Nagy, and M. Feher, Appl. Phys. B 63, 399 (1996).
    [CrossRef]
  13. G. Stephan, R. Le Naour, and A. Le Floch, Phys. Rev. A 17, 733 (1978).
    [CrossRef]
  14. P. Cerez and R. Felder, Appl. Opt. 22, 1251 (1983).
    [CrossRef] [PubMed]
  15. S. T. Dawkins, J. J. McFerran, and A. N. Luiten, IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. 54, 918 (2007). We used an Agilent 53132A counter here, which is a lambda-type counter, and our beat note was around 160MHz.
    [CrossRef]
  16. P. Fendel, D. Bergeson, Th. Udem, and T. W. Hansch, Opt. Lett. 32, 701 (2007).
    [CrossRef] [PubMed]
  17. V. Gerginov, A. Deerevianko, and C. E. Tanner, Phys. Rev. Lett. 91, 072501 (2003).
    [CrossRef] [PubMed]
  18. W.-Y. Cheng, T. H. Wu, S. W. Huang, S. Y. Lin, and C. M. Wu, Appl. Phys. B 92, 13 (2008).
    [CrossRef]

2010 (1)

Y.-C. Lee, H.-C. Chui, Y.-Y. Chen, Y.-H. Chang, and C.-C. Tsai, Opt. Commun. 283, 1788 (2010).
[CrossRef]

2008 (1)

W.-Y. Cheng, T. H. Wu, S. W. Huang, S. Y. Lin, and C. M. Wu, Appl. Phys. B 92, 13 (2008).
[CrossRef]

2007 (4)

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. 54, 918 (2007). We used an Agilent 53132A counter here, which is a lambda-type counter, and our beat note was around 160MHz.
[CrossRef]

P. Fendel, D. Bergeson, Th. Udem, and T. W. Hansch, Opt. Lett. 32, 701 (2007).
[CrossRef] [PubMed]

M. Gunawardena, D. S. Elliott, M. S. Safronova, and U. Safronova, Phys. Rev. A 75, 022507 (2007).
[CrossRef]

C.-Y. Cheng, C.-M. Wu, G.-B. Liao, and W.-Y. Cheng, Opt. Lett. 32, 536 (2007).
[CrossRef]

2005 (2)

For cesium atom: T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, J. Phys. Soc. Jpn. 74, 2487 (2005).
[CrossRef]

For rubidium atom, 778nm standard: C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, Metrologia 42, 464 (2005), and references therein.
[CrossRef]

2003 (1)

V. Gerginov, A. Deerevianko, and C. E. Tanner, Phys. Rev. Lett. 91, 072501 (2003).
[CrossRef] [PubMed]

2002 (1)

For rubidium: M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, Opt. Commun. 207, 233 (2002). The cavity enhancing scheme is the most popular scheme to save power. It could be compact; however, optical feedback directly from the cavity is serious. More optical isolation and electronics are needed, which added to the cost and complexity.
[CrossRef]

1999 (1)

For cesium: G. Hagel, C. Nesi, L. Jozefowski, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

1996 (1)

Z. Bozoki, J. Sneider, G. Szabo, A. Miklos, M. Serenvi, G. Nagy, and M. Feher, Appl. Phys. B 63, 399 (1996).
[CrossRef]

1995 (1)

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, Opt. Commun. 117, 541 (1995).
[CrossRef]

1985 (1)

1984 (1)

1983 (1)

1978 (1)

G. Stephan, R. Le Naour, and A. Le Floch, Phys. Rev. A 17, 733 (1978).
[CrossRef]

Barwood, G. P.

For rubidium atom, 778nm standard: C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, Metrologia 42, 464 (2005), and references therein.
[CrossRef]

Bergeson, D.

Biraben, F.

For cesium: G. Hagel, C. Nesi, L. Jozefowski, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

Bozoki, Z.

Z. Bozoki, J. Sneider, G. Szabo, A. Miklos, M. Serenvi, G. Nagy, and M. Feher, Appl. Phys. B 63, 399 (1996).
[CrossRef]

Cave, T. B.

Cerez, P.

Chang, Y.-H.

Y.-C. Lee, H.-C. Chui, Y.-Y. Chen, Y.-H. Chang, and C.-C. Tsai, Opt. Commun. 283, 1788 (2010).
[CrossRef]

Chen, Y.-Y.

Y.-C. Lee, H.-C. Chui, Y.-Y. Chen, Y.-H. Chang, and C.-C. Tsai, Opt. Commun. 283, 1788 (2010).
[CrossRef]

Cheng, C.-Y.

Cheng, W.-Y.

W.-Y. Cheng, T. H. Wu, S. W. Huang, S. Y. Lin, and C. M. Wu, Appl. Phys. B 92, 13 (2008).
[CrossRef]

C.-Y. Cheng, C.-M. Wu, G.-B. Liao, and W.-Y. Cheng, Opt. Lett. 32, 536 (2007).
[CrossRef]

Chui, H.-C.

Y.-C. Lee, H.-C. Chui, Y.-Y. Chen, Y.-H. Chang, and C.-C. Tsai, Opt. Commun. 283, 1788 (2010).
[CrossRef]

Dawkins, S. T.

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. 54, 918 (2007). We used an Agilent 53132A counter here, which is a lambda-type counter, and our beat note was around 160MHz.
[CrossRef]

Deerevianko, A.

V. Gerginov, A. Deerevianko, and C. E. Tanner, Phys. Rev. Lett. 91, 072501 (2003).
[CrossRef] [PubMed]

Edwards, C. S.

For rubidium atom, 778nm standard: C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, Metrologia 42, 464 (2005), and references therein.
[CrossRef]

Elliott, D. S.

M. Gunawardena, D. S. Elliott, M. S. Safronova, and U. Safronova, Phys. Rev. A 75, 022507 (2007).
[CrossRef]

Esslinger, T.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, Opt. Commun. 117, 541 (1995).
[CrossRef]

Feher, M.

Z. Bozoki, J. Sneider, G. Szabo, A. Miklos, M. Serenvi, G. Nagy, and M. Feher, Appl. Phys. B 63, 399 (1996).
[CrossRef]

Felder, R.

Fendel, P.

Fukuda, T.

For cesium atom: T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, J. Phys. Soc. Jpn. 74, 2487 (2005).
[CrossRef]

Gerginov, V.

V. Gerginov, A. Deerevianko, and C. E. Tanner, Phys. Rev. Lett. 91, 072501 (2003).
[CrossRef] [PubMed]

Gill, P.

For rubidium atom, 778nm standard: C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, Metrologia 42, 464 (2005), and references therein.
[CrossRef]

Guest, A.

Gunawardena, M.

M. Gunawardena, D. S. Elliott, M. S. Safronova, and U. Safronova, Phys. Rev. A 75, 022507 (2007).
[CrossRef]

Hagel, G.

For cesium: G. Hagel, C. Nesi, L. Jozefowski, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

Hansch, T. W.

P. Fendel, D. Bergeson, Th. Udem, and T. W. Hansch, Opt. Lett. 32, 701 (2007).
[CrossRef] [PubMed]

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, Opt. Commun. 117, 541 (1995).
[CrossRef]

W. T. Hill, III, T. W. Hansch, and A. L. Schawlow, Appl. Opt. 24, 3718 (1985).
[CrossRef]

Hemmerich, A.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, Opt. Commun. 117, 541 (1995).
[CrossRef]

Hill, W. T.

Huang, S. W.

W.-Y. Cheng, T. H. Wu, S. W. Huang, S. Y. Lin, and C. M. Wu, Appl. Phys. B 92, 13 (2008).
[CrossRef]

Hugon, D.

Jamroz, W.

Jozefowski, L.

For cesium: G. Hagel, C. Nesi, L. Jozefowski, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

Konig, W.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, Opt. Commun. 117, 541 (1995).
[CrossRef]

Latrasse, C.

For rubidium: M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, Opt. Commun. 207, 233 (2002). The cavity enhancing scheme is the most popular scheme to save power. It could be compact; however, optical feedback directly from the cavity is serious. More optical isolation and electronics are needed, which added to the cost and complexity.
[CrossRef]

Le Floch, A.

G. Stephan, R. Le Naour, and A. Le Floch, Phys. Rev. A 17, 733 (1978).
[CrossRef]

Le Naour, R.

G. Stephan, R. Le Naour, and A. Le Floch, Phys. Rev. A 17, 733 (1978).
[CrossRef]

Lee, Y.-C.

Y.-C. Lee, H.-C. Chui, Y.-Y. Chen, Y.-H. Chang, and C.-C. Tsai, Opt. Commun. 283, 1788 (2010).
[CrossRef]

Liao, G.-B.

Lin, S. Y.

W.-Y. Cheng, T. H. Wu, S. W. Huang, S. Y. Lin, and C. M. Wu, Appl. Phys. B 92, 13 (2008).
[CrossRef]

Luiten, A. N.

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. 54, 918 (2007). We used an Agilent 53132A counter here, which is a lambda-type counter, and our beat note was around 160MHz.
[CrossRef]

Margolis, H. S.

For rubidium atom, 778nm standard: C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, Metrologia 42, 464 (2005), and references therein.
[CrossRef]

May, A. D.

McFerran, J. J.

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. 54, 918 (2007). We used an Agilent 53132A counter here, which is a lambda-type counter, and our beat note was around 160MHz.
[CrossRef]

Miklos, A.

Z. Bozoki, J. Sneider, G. Szabo, A. Miklos, M. Serenvi, G. Nagy, and M. Feher, Appl. Phys. B 63, 399 (1996).
[CrossRef]

Nagy, G.

Z. Bozoki, J. Sneider, G. Szabo, A. Miklos, M. Serenvi, G. Nagy, and M. Feher, Appl. Phys. B 63, 399 (1996).
[CrossRef]

Nesi, C.

For cesium: G. Hagel, C. Nesi, L. Jozefowski, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

Nez, F.

For cesium: G. Hagel, C. Nesi, L. Jozefowski, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

Nishimiya, N.

For cesium atom: T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, J. Phys. Soc. Jpn. 74, 2487 (2005).
[CrossRef]

Ohtsuka, T.

For cesium atom: T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, J. Phys. Soc. Jpn. 74, 2487 (2005).
[CrossRef]

Poulin, M.

For rubidium: M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, Opt. Commun. 207, 233 (2002). The cavity enhancing scheme is the most popular scheme to save power. It could be compact; however, optical feedback directly from the cavity is serious. More optical isolation and electronics are needed, which added to the cost and complexity.
[CrossRef]

Ricci, L.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, Opt. Commun. 117, 541 (1995).
[CrossRef]

Rowley, W. R. C.

For rubidium atom, 778nm standard: C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, Metrologia 42, 464 (2005), and references therein.
[CrossRef]

Safronova, M. S.

M. Gunawardena, D. S. Elliott, M. S. Safronova, and U. Safronova, Phys. Rev. A 75, 022507 (2007).
[CrossRef]

Safronova, U.

M. Gunawardena, D. S. Elliott, M. S. Safronova, and U. Safronova, Phys. Rev. A 75, 022507 (2007).
[CrossRef]

Schawlow, A. L.

Serenvi, M.

Z. Bozoki, J. Sneider, G. Szabo, A. Miklos, M. Serenvi, G. Nagy, and M. Feher, Appl. Phys. B 63, 399 (1996).
[CrossRef]

Sneider, J.

Z. Bozoki, J. Sneider, G. Szabo, A. Miklos, M. Serenvi, G. Nagy, and M. Feher, Appl. Phys. B 63, 399 (1996).
[CrossRef]

Stephan, G.

G. Stephan, R. Le Naour, and A. Le Floch, Phys. Rev. A 17, 733 (1978).
[CrossRef]

Suzuki, M.

For cesium atom: T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, J. Phys. Soc. Jpn. 74, 2487 (2005).
[CrossRef]

Szabo, G.

Z. Bozoki, J. Sneider, G. Szabo, A. Miklos, M. Serenvi, G. Nagy, and M. Feher, Appl. Phys. B 63, 399 (1996).
[CrossRef]

Tanner, C. E.

V. Gerginov, A. Deerevianko, and C. E. Tanner, Phys. Rev. Lett. 91, 072501 (2003).
[CrossRef] [PubMed]

Tetu, M.

For rubidium: M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, Opt. Commun. 207, 233 (2002). The cavity enhancing scheme is the most popular scheme to save power. It could be compact; however, optical feedback directly from the cavity is serious. More optical isolation and electronics are needed, which added to the cost and complexity.
[CrossRef]

Touahri, D.

For rubidium: M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, Opt. Commun. 207, 233 (2002). The cavity enhancing scheme is the most popular scheme to save power. It could be compact; however, optical feedback directly from the cavity is serious. More optical isolation and electronics are needed, which added to the cost and complexity.
[CrossRef]

Tsai, C.-C.

Y.-C. Lee, H.-C. Chui, Y.-Y. Chen, Y.-H. Chang, and C.-C. Tsai, Opt. Commun. 283, 1788 (2010).
[CrossRef]

Udem, Th.

Vuletic, V.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, Opt. Commun. 117, 541 (1995).
[CrossRef]

Weidemuller, M.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, Opt. Commun. 117, 541 (1995).
[CrossRef]

Wu, C. M.

W.-Y. Cheng, T. H. Wu, S. W. Huang, S. Y. Lin, and C. M. Wu, Appl. Phys. B 92, 13 (2008).
[CrossRef]

Wu, C.-M.

Wu, T. H.

W.-Y. Cheng, T. H. Wu, S. W. Huang, S. Y. Lin, and C. M. Wu, Appl. Phys. B 92, 13 (2008).
[CrossRef]

Zimmermann, C.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, Opt. Commun. 117, 541 (1995).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (2)

Z. Bozoki, J. Sneider, G. Szabo, A. Miklos, M. Serenvi, G. Nagy, and M. Feher, Appl. Phys. B 63, 399 (1996).
[CrossRef]

W.-Y. Cheng, T. H. Wu, S. W. Huang, S. Y. Lin, and C. M. Wu, Appl. Phys. B 92, 13 (2008).
[CrossRef]

IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. (1)

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. 54, 918 (2007). We used an Agilent 53132A counter here, which is a lambda-type counter, and our beat note was around 160MHz.
[CrossRef]

J. Phys. Soc. Jpn. (1)

For cesium atom: T. Ohtsuka, N. Nishimiya, T. Fukuda, and M. Suzuki, J. Phys. Soc. Jpn. 74, 2487 (2005).
[CrossRef]

Metrologia (1)

For rubidium atom, 778nm standard: C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, Metrologia 42, 464 (2005), and references therein.
[CrossRef]

Opt. Commun. (4)

For cesium: G. Hagel, C. Nesi, L. Jozefowski, F. Nez, and F. Biraben, Opt. Commun. 160, 1 (1999).
[CrossRef]

For rubidium: M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, Opt. Commun. 207, 233 (2002). The cavity enhancing scheme is the most popular scheme to save power. It could be compact; however, optical feedback directly from the cavity is serious. More optical isolation and electronics are needed, which added to the cost and complexity.
[CrossRef]

Y.-C. Lee, H.-C. Chui, Y.-Y. Chen, Y.-H. Chang, and C.-C. Tsai, Opt. Commun. 283, 1788 (2010).
[CrossRef]

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, Opt. Commun. 117, 541 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (2)

G. Stephan, R. Le Naour, and A. Le Floch, Phys. Rev. A 17, 733 (1978).
[CrossRef]

M. Gunawardena, D. S. Elliott, M. S. Safronova, and U. Safronova, Phys. Rev. A 75, 022507 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

V. Gerginov, A. Deerevianko, and C. E. Tanner, Phys. Rev. Lett. 91, 072501 (2003).
[CrossRef] [PubMed]

Other (1)

Professor Nobuo Nisimiya, Tokyo Polytechnic University, Atsugi-City, Kanagawa, 243-0297 Japan, nisimiya@em.t-kougei.ac.jp (personal communication, November 8, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure of our intracavity two-photon stabilized lasers and the relevant energy level diagram: A, copper-housed laser diode with a collimating tube; B, 1800 groove / mm grating; C, AR-coated cesium cell ( 884 nm system) and Brewster- window sealed cesium cell ( 822 nm system); D, piezoelectric transducer; E, fluorescence collector; F, Teflon bulk for thermal isolation; G, TE cooler; H, focus lens and holder; and I, μ-metal. Inset, enlargement of PZT holder for the 884 nm system.

Fig. 2
Fig. 2

Intracavity Doppler-free two-photon spectrograms in three different wavelengths and the corresponding level diagram. (a) Typical absorption signals ( 6 S 1 / 2 6 D 5 / 2 , 883.7 nm ). Note that F = 2 of F = 4 group and F = 1 of F = 3 group are clearly resolved. (b) Typical first derivative signals ( 6 S 1 / 2 6 D 3 / 2 , 885.4 nm ). (c) Isolated 6 S 1 / 2 8 S 1 / 2 ( 822.5 nm ) hyperfine transition for inspecting the influence of laser cavity on the spectral lineshape. The hand-sized laser on the right side was freely running; see text. The blue line in the right-side figure is a Voigt-fitting curve. The symmetric residual is a sufficient condition for lineshape symmetry.

Fig. 3
Fig. 3

Mode pulling inspection, 6S–8S, F = 3 F = 3 transition was selected. Δ f b is the beat frequency of the two lasers, and V saw is the offset voltage of the cavity PZT with a constant 10 mHz saw-wave frequency; frequency locking was always engaged during the period of data acquisition. Data points were repeatedly obtained by scanning the laser cavity length with a slow saw wave ( 10 mHz ) and recording each point of the saw-wave voltage versus Δ f b simultaneously. The red line is a linear fitting. The fitting residual mainly comes from laser frequency instability during the scan; see text.

Fig. 4
Fig. 4

Demonstration of laser stabilization. Two hand-sized 6S–8S, F = 3 F = 3 transition-stabilized lasers were used. (a) Stability: here the “frequency instability” is deduced via a process similar to the Allan deviation; however, it was not exactly an Allan deviation due to our lambda-type counter [15]; see text. Both horizontal and vertical axes are on a log scale. Frequency instability was estimated as 3 × 10 13 ( Δ f 100 Hz ) at a 400 s sampling time. (b) Reproducibility: beat note measurements over a period of 16 d . A maximum frequency discrepancy of 3.5 kHz was observed.

Metrics