Abstract

We have developed a stable, high-power, single-frequency optically pumped external-cavity semiconductor laser system and generate up to 125mW of power at 253.7nm using successive frequency doubling stages. We demonstrate precision scanning and control of the laser frequency in the UV to be used for cooling and trapping of mercury atoms. With active frequency stabilization, a linewidth of <60kHz is measured in the IR. Doppler-free spectroscopy and stabilization to the 61S063P1 mercury transition at 253.7nm is demonstrated. To our knowledge, this is the first demonstration of Doppler-free spectroscopy in the deep UV based on a frequency-quadrupled, high-power (>1W) optically pumped semiconductor laser system. The results demonstrate the utility of these devices for precision spectroscopy at deep-UV wavelengths.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, Phys. Rev. Lett. 100, 053001 (2008).
    [CrossRef] [PubMed]
  2. Y. Kaneda, J. M. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, Opt. Lett. 33, 1705 (2008).
    [CrossRef] [PubMed]
  3. A. Garnache, A. Ouvrard, and D. Romanini, Opt. Express 15, 9403 (2007).
    [CrossRef] [PubMed]
  4. T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, IEEE Photon. Technol. Lett. 22, 661 (2010).
    [CrossRef]
  5. T. W. Hansch and B. Couillaud, Opt. Commun. 35, 441 (1980).
    [CrossRef]
  6. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, Opt. Express 18, 14627 (2010).
    [CrossRef] [PubMed]

2010 (2)

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, IEEE Photon. Technol. Lett. 22, 661 (2010).
[CrossRef]

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, Opt. Express 18, 14627 (2010).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

1980 (1)

T. W. Hansch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Beaudoin, G.

Chatterjee, S.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, IEEE Photon. Technol. Lett. 22, 661 (2010).
[CrossRef]

Chernikov, A.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, IEEE Photon. Technol. Lett. 22, 661 (2010).
[CrossRef]

Couillaud, B.

T. W. Hansch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Derevianko, A.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, Phys. Rev. Lett. 100, 053001 (2008).
[CrossRef] [PubMed]

Fallahi, M.

Fan, L.

Garnache, A.

Hachisu, H.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, Phys. Rev. Lett. 100, 053001 (2008).
[CrossRef] [PubMed]

Hader, J.

Hansch, T. W.

T. W. Hansch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Hessenius, C.

Honda, Y.

Kaneda, Y.

Katori, H.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, Phys. Rev. Lett. 100, 053001 (2008).
[CrossRef] [PubMed]

Kitaoka, Y.

Koch, S. W.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, IEEE Photon. Technol. Lett. 22, 661 (2010).
[CrossRef]

Kunert, B.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, IEEE Photon. Technol. Lett. 22, 661 (2010).
[CrossRef]

Laurain, A.

Li, L.

Miyagishi, K.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, Phys. Rev. Lett. 100, 053001 (2008).
[CrossRef] [PubMed]

Miyazono, K.

Moloney, J. V.

Mori, Y.

Myara, M.

Nishioka, M.

Ouvrard, A.

Ovsiannikov, V. D.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, Phys. Rev. Lett. 100, 053001 (2008).
[CrossRef] [PubMed]

Pal’chikov, V. G.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, Phys. Rev. Lett. 100, 053001 (2008).
[CrossRef] [PubMed]

Peyghambarian, N.

Porsev, S. G.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, Phys. Rev. Lett. 100, 053001 (2008).
[CrossRef] [PubMed]

Romanini, D.

Sagnes, I.

Sasaki, T.

Shimatani, H.

Shimizu, Y.

Stolz, W.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, IEEE Photon. Technol. Lett. 22, 661 (2010).
[CrossRef]

Takamoto, M.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, Phys. Rev. Lett. 100, 053001 (2008).
[CrossRef] [PubMed]

Wang, T. L.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, IEEE Photon. Technol. Lett. 22, 661 (2010).
[CrossRef]

Yarborough, J. M.

Yoshimura, M.

IEEE Photon. Technol. Lett. (1)

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, IEEE Photon. Technol. Lett. 22, 661 (2010).
[CrossRef]

Opt. Commun. (1)

T. W. Hansch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, Phys. Rev. Lett. 100, 053001 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the deep-UV OPSL-based laser source. The insets show actual UV beam profile before and after spatial filtering. OC, output coupler; BF, birefringent filter; SF, spatial filter.

Fig. 2
Fig. 2

Green and UV output power versus incident power. The inset shows the long-term locking and power stability of the UV light.

Fig. 3
Fig. 3

Beat-note linewidth between OPSL laser and a stabilized external-cavity diode laser.

Fig. 4
Fig. 4

(a) Normalized saturated absorption spectrum of the 6 1 S 0 6 3 P 1 transition of Hg 200 at 254 nm . The figure shows a scanning range of 6 GHz . (b) Saturated absorption error signal from phase sensitive detection of a 100 kHz frequency modulation. (c) Error signal of the unlocked laser indicative of the reference cavity drift over time. (d) Error signal when locked to the saturated absorption signal.

Metrics